The most used material in the world after water is concrete, which depends mainly on its manufacture of cement leading to the emission of carbon dioxide (CO2), flying dust, and other greenhouse gasses (GHGs) resulting in pollution of the atmosphere. The emission of CO2 from cement production is approximately 5% of the global anthropogenic CO2. This research focuses on investigating the amount of CO2 emission from the Iraqi General Cement Company plants includes the cement factories of Kirkuk, Al-Qa’em, Fallujah, and Kubaisa, using the GHGs Protocol Measures Program (specifically cement based-method). The data required for cement production was provided by the Iraqi Ministry of Industry and Minerals throughout 25 years. The results showed that the largest amount of CO2 emissions cumulatively over 25 years was from the Kubaisa plant with an average emission amount of approximately 7,613,605 tons/25 years. While the lowest cumulative amount of emission was by Fallujah cement plant represented by about 868,341 tons/25 years. On the other hand, the highest and lowest production amount was from Kubaisa and Fallujah plants at 105% and 0.6% in 1989 and 2008 respectively relative to the design capacity. Shifting to renewable and clean energies that limit the amount of CO2 emitted to the atmosphere is highly recommended, although this requires facing problematic challenges.
In this research, the effect of multi-walled carbon nanotubes (MWCNTs) on the alumina/chromia (Al2O3/Cr2O3) nanocomposites has been investigated. Al2O3/Cr2O3-MWCNTs nanocomposites with variable contents of Cr2O3 and MWCNTs were fabricated using coprecipitation process and followed by spark plasma sintering. XRD analysis revealed a good crystallinity of sintered nanocomposites samples and there was only one phase presence of Al2O3-Cr2O3 solid solution. Density, Vickers microhardness, fracture toughness and fracture strength have been measured in the sintered samples. The results show tha
... Show MoreThe aim of this work is to enhance the mechanical properties of the glass ionomer cement GIC (dental materials) by adding Zirconium Oxide ZrO2 in both micro and nano particles. GIC were mixed with (3, 5 and 7) wt% of both ZrO2 micro and nanoparticles separately. Compressive strength (CS), biaxial flexural strength (BFS), Vickers Microhardness (VH) and wear rate losses (WR) were investigated. The maximum compression strength was 122.31 MPa with 5 wt. % ZrO2 micro particle, while 3wt% nanoparticles give highest Microhardness and biaxial flexural strength of 88.8 VHN and 35.79 MPa respectively. The minimum wear rate losses were 3.776µg/m with 7 wt. % ZrO2 nanoparticle. GIC-contai
... Show MoreThe nanostructured MnO2 /carbon fiber (CF) composite electrode was prepared using the anodic electrodeposition process. The crystal structure and morphology of MnO2 particles were determined with X-ray diffraction and field-emission scanning electron microscopy. The electrosorptive properties of the prepared electrode were investigated in the removal of cadmium ions from aqueous solution, and the effect of pH, cell voltage, and ionic strength was optimized and modeled using the response surface methodology combined with Box–Behnken design. The results confirm that the optimum conditions to remove Cd(II) ions were: pH of 6.03, a voltage of 2.77 V, and NaCl concentration of 3 g/L. The experimental results showed a good fit for the Freundli
... Show MoreThe present work involves studying the effect of electrolyte composition [@1= 0.5 wt.% NH4F / 5% H2O / 5% Glycerol (GLY)/ 90% Ethylene Glycol (EG)] and [ @2= 0.5 wt. % NH4F / 5% H2O / 95% Ethylene Glycol (EG)] on the structural and photoelectrochemical properties of titania nanotubes arrays (TNTAs). TNTAs substrates were successfully carried out via anodization technique and were carried out in 40 V for one hour in different electrolytes (@1, and @2). The properties of physicochemical of TNTAs were distinguished via an X-ray Diffractometer (XRD), Field Emission Scanning Electron Microscope (FESEM), an Energy Dispersive X-ray (EDX), and UV–visible diffuse reflectance. The photoelectrochemical response of TNTAs was evaluated
... Show MoreThe present work involves studying the effect of electrolyte composition [@1= 0.5 wt.% NH4F / 5% H2O / 5% Glycerol (GLY)/ 90% Ethylene Glycol (EG)] and [ @2= 0.5 wt. % NH4F / 5% H2O / 95% Ethylene Glycol (EG)] on the structural and photoelectrochemical properties of titania nanotubes arrays (TNTAs). TNTAs substrates were successfully carried out via anodization technique and were carried out in 40 V for one hour in different electrolytes (@1, and @2). The properties of physicochemical of TNTAs were distinguished via an X-ray Diffractometer (XRD), Field Emission Scanning Electron Microscope (FESEM), an Energy Dispersive X-ray (EDX), and UV–visible diffuse reflectance. T
... Show More