The aim of this paper is to determine the flexural moment capacity of Reactive Powder Concrete (RPC) two-way slabs based on three models proposed by previous studies (Model 1, Model 2, and Model 3). The results obtained from these models were compared with those obtained from experimental work to check the accuracy and the applicability of the adopted theoretical models. The experimental program included the testing of three simply supported RPC two-way slabs (1000x1000x70) mm each. The tested specimens had identical properties except their steel fibres volume ratios (0.5 %, 1 %, and 1.5 %). The comparison with the experimental data showed that (Model 3) is the most suitable one among the three models. Model 1 was found to underestimate the failure load, and Model 2 was found to overestimate it. The maximum differences between the theoretical and experimental failure loads obtained from Model 1, Model 2, and Model 3 were 55.2% 87.2%, and 3.4%, respectively.
This paper presents a fuzzy logic controller for a two-tank level control system, which is a process with a dead time. The fuzzy controller is a proportional-integral (PI-like) fuzzy controller which is suitable for steady state behavior of the system. Transient behavior of the system was improved without the need for a derivative action by suitable change in the rule base of the controller. Simulation results showed the step response of the two-tank level control system when this controller was used to control this plant and the effect of the dead time on the response of the system.
This paper deals with defining Burr-XII, and how to obtain its p.d.f., and CDF, since this distribution is one of failure distribution which is compound distribution from two failure models which are Gamma model and weibull model. Some equipment may have many important parts and the probability distributions representing which may be of different types, so found that Burr by its different compound formulas is the best model to be studied, and estimated its parameter to compute the mean time to failure rate. Here Burr-XII rather than other models is consider because it is used to model a wide variety of phenomena including crop prices, household income, option market price distributions, risk and travel time. It has two shape-parame
... Show MoreBackground: The finite element method (FEM) is expected to be one of the most effective computational tools for measuring the stress on implant-supported restorations. This study was designed using the 3D-FEM to evaluate the effect of two adhesive luting types of cement on the occlusal stress and deformation of a hybrid crown cemented to a mono-implant. Materials and Method: The mono-screw STL file was imported into the CAD/CAM system library from a database supported by De-Tech Implant Technology. This was to assist in the accurate reproduction of details and design of a simulated implant abutment. Virtually, a digital crown was designed to be cemented on an abutment screw. A minimum occlusal thickness of 1mm and marginal fitting of 1.2
... Show MoreThe effect of D phase polyamide (PA6)on the rheological properties, Young Modulus and the thermal expansion coefficient of two blends groups (bitumen-polyamide) were tested. The first group was for bitumen-PA6 blends and the second group for bitumen blended with polymer resulted from the crystallization of PA6-formic acid solution in water(PAFW).The obtained results proved that adding both types of polyamide has led to a rise in toughness and softening point temperature while the penetration Index approached -3 after adding the polyamide. So, all these changes make bitumen-polyamide blends more suitable for use in hot climate regions. The blends properties were explained according to the reaction that takes place between the polyamide and
... Show MoreA factorial experiment (2× 3) in randomized complete block design (RCBD) with three replications was conducted to examine the effect of honeycomb selection method using three interplant distances on the vegetative growth, flowering, and fruit set of two cultivars of bean, Bronco and Strike. Interplant distances used were 75× 65 cm, 90× 78 cm, and 105× 91 cm (row× plant) represent short (high plant density), intermediate (intermediate plant density), and wide (low plant density) distance, respectively. Parameters used for selection were number of days from planting to the initiation of first flower, number of nodes formed prior to the onset of first flower, and number of main branches. Results showed significant superiority of the Strik
... Show MoreFor aspirin estimated, a molecularly imprinted polymer MIP-ASP electrodes were generated by electro-polymerization process, the electrodes were prepared by combining the template (aspirin) with (vinyl acetate (VA), 1-vinylimidizole (VIZ) as a functional monomer and N, N-methylene bisacrylamide (MBAA) as crosslinkers using benzoyl peroxide (BPO) as an initiator. The efficiency of the membrane electrodes was analyzed by differential pulse voltammetry (DPV). Four electrodes were synthesized using two different plasticizers, di-butyl sebacate (DBS), di-octyl phthalate (DOP) in PVC matrix. Scanning electron microscopy (SEM) was used to describe the generated MIP, studying the electrodes properties, the slope, detection limit, and life
... Show MoreA reinforced concrete frame is referred as "RIGID FRAMES". However, researches indicate that the Beam-Column joint (BCJ) is definitely not rigid. In addition, extensive research shows that failure may occur at the joint instead of in the beam or the column. Joint failure is known to be a catastrophic type which is difficult to repair.
This study was carried out to investigate the effect of hoops and column axial load on the shear strength of high-strength fiber reinforced Beam-Column Joints by using a numerical model based on finite element method using computer program ANSYS (Version 11.0). The variables are: diameter of hoops and magnitude of column axial load.
The theoretical results obtained from ANSYS program are in a good a
Near surface mounted (NSM) carbon fibers reinforced polymer (CFRP) reinforcement is one of the techniques for reinforcing masonry structures and is considered to provide significant advantages. This paper is composed of two parts. The first part presents the experimental study of brick masonry walls reinforced with NSM CFRP strips under combined shear-compression loads. Masonry walls have been tested under vertical compression, with different bed joint orientations 90° and 45° relative to the loading direction. Different reinforcement orientations were used including vertical, horizontal, and a combination of both sides of the wall. The second part of this paper comprises a numerical analysis of unreinforced brick masonry (URM) wa
... Show More