Preferred Language
Articles
/
9hdcWZIBVTCNdQwC6azZ
Efficient Intrusion Detection Through the Fusion of AI Algorithms and Feature Selection Methods
...Show More Authors

With the proliferation of both Internet access and data traffic, recent breaches have brought into sharp focus the need for Network Intrusion Detection Systems (NIDS) to protect networks from more complex cyberattacks. To differentiate between normal network processes and possible attacks, Intrusion Detection Systems (IDS) often employ pattern recognition and data mining techniques. Network and host system intrusions, assaults, and policy violations can be automatically detected and classified by an Intrusion Detection System (IDS). Using Python Scikit-Learn the results of this study show that Machine Learning (ML) techniques like Decision Tree (DT), Naïve Bayes (NB), and K-Nearest Neighbor (KNN) can enhance the effectiveness of an Intrusion Detection System (IDS). Success is measured by a variety of metrics, including accuracy, precision, recall, F1-Score, and execution time. Applying feature selection approaches such as Analysis of Variance (ANOVA), Mutual Information (MI), and Chi-Square (Ch-2) reduced execution time, increased detection efficiency and accuracy, and boosted overall performance. All classifiers achieve the greatest performance with 99.99% accuracy and the shortest computation time of 0.0089 seconds while using ANOVA with 10% of features.

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Sat Dec 31 2022
Journal Name
Mathematical Modelling Of Engineering Problems
Investigation of Energy Efficient Clustering Algorithms in WSNs: A Review
...Show More Authors

In recent years, Wireless Sensor Networks (WSNs) are attracting more attention in many fields as they are extensively used in a wide range of applications, such as environment monitoring, the Internet of Things, industrial operation control, electric distribution, and the oil industry. One of the major concerns in these networks is the limited energy sources. Clustering and routing algorithms represent one of the critical issues that directly contribute to power consumption in WSNs. Therefore, optimization techniques and routing protocols for such networks have to be studied and developed. This paper focuses on the most recent studies and algorithms that handle energy-efficiency clustering and routing in WSNs. In addition, the prime

... Show More
View Publication
Scopus (7)
Crossref (2)
Scopus Crossref
Publication Date
Wed Mar 16 2022
Journal Name
2022 Muthanna International Conference On Engineering Science And Technology (micest)
A hybrid feature selection technique using chi-square with genetic algorithm
...Show More Authors

View Publication
Scopus (2)
Crossref (1)
Scopus Crossref
Publication Date
Mon Dec 14 2020
Journal Name
2020 13th International Conference On Developments In Esystems Engineering (dese)
Anomaly Based Intrusion Detection System Using Hierarchical Classification and Clustering Techniques
...Show More Authors

With the rapid development of computers and network technologies, the security of information in the internet becomes compromise and many threats may affect the integrity of such information. Many researches are focused theirs works on providing solution to this threat. Machine learning and data mining are widely used in anomaly-detection schemes to decide whether or not a malicious activity is taking place on a network. In this paper a hierarchical classification for anomaly based intrusion detection system is proposed. Two levels of features selection and classification are used. In the first level, the global feature vector for detection the basic attacks (DoS, U2R, R2L and Probe) is selected. In the second level, four local feature vect

... Show More
View Publication
Scopus (3)
Crossref (2)
Scopus Clarivate Crossref
Publication Date
Fri Nov 01 2019
Journal Name
2019 1st International Informatics And Software Engineering Conference (ubmyk)
Radial Basis Function (RBF) Based on Multistage Autoencoders for Intrusion Detection system (IDS)
...Show More Authors

In this paper, RBF-based multistage auto-encoders are used to detect IDS attacks. RBF has numerous applications in various actual life settings. The planned technique involves a two-part multistage auto-encoder and RBF. The multistage auto-encoder is applied to select top and sensitive features from input data. The selected features from the multistage auto-encoder is wired as input to the RBF and the RBF is trained to categorize the input data into two labels: attack or no attack. The experiment was realized using MATLAB2018 on a dataset comprising 175,341 case, each of which involves 42 features and is authenticated using 82,332 case. The developed approach here has been applied for the first time, to the knowledge of the authors, to dete

... Show More
View Publication
Scopus (3)
Crossref (2)
Scopus Crossref
Publication Date
Sat Apr 05 2025
Journal Name
2025 Ieee 4th International Conference On Computing And Machine Intelligence (icmi)
From Pixels to Diagnosis: AI-Powered CNN for Pneumonia Detection
...Show More Authors

View Publication Preview PDF
Scopus Crossref
Publication Date
Sun Jan 01 2023
Journal Name
Ieee Access
Fuzzy-Based Ensemble Feature Selection for Automated Estimation of Speaker Height and Age Using Vocal Characteristics
...Show More Authors

View Publication
Scopus (2)
Crossref (1)
Scopus Clarivate Crossref
Publication Date
Sun May 01 2022
Journal Name
Journal Of Engineering
Performance Analysis of different Machine Learning Models for Intrusion Detection Systems
...Show More Authors

In recent years, the world witnessed a rapid growth in attacks on the internet which resulted in deficiencies in networks performances. The growth was in both quantity and versatility of the attacks. To cope with this, new detection techniques are required especially the ones that use Artificial Intelligence techniques such as machine learning based intrusion detection and prevention systems. Many machine learning models are used to deal with intrusion detection and each has its own pros and cons and this is where this paper falls in, performance analysis of different Machine Learning Models for Intrusion Detection Systems based on supervised machine learning algorithms. Using Python Scikit-Learn library KNN, Support Ve

... Show More
View Publication Preview PDF
Crossref (6)
Crossref
Publication Date
Tue Feb 18 2025
Journal Name
International Journal Of Scientific Research In Science, Engineering And Technology
A Comprehensive Review on Cryptography Algorithms: Methods and Comparative Analysis
...Show More Authors

The evolution of cryptography has been crucial to preservation subtle information in the digital age. From early cipher algorithms implemented in earliest societies to recent cryptography methods, cryptography has developed alongside developments in computing field. The growing in cyber threats and the increase of comprehensive digital communications have highlighted the significance of selecting effective and robust cryptographic techniques. This article reviews various cryptography algorithms, containing symmetric key and asymmetric key cryptography, via evaluating them according to security asset, complexity, and execution speed. The main outcomes demonstrate the growing trust on elliptic curve cryptography outstanding its capabi

... Show More
View Publication
Crossref
Publication Date
Sat Dec 30 2023
Journal Name
Traitement Du Signal
Optimizing Acoustic Feature Selection for Estimating Speaker Traits: A Novel Threshold-Based Approach
...Show More Authors

View Publication
Clarivate Crossref
Publication Date
Fri Mar 01 2013
Journal Name
Journal Of Economics And Administrative Sciences
The construction of Investment Portfolios in the Iraq Stock Exchange: Market Timing Vs. an Efficient Selection
...Show More Authors

Abstract

         Uncertainty, the deeply-rooted fact that surrounding the investment environment, especially the stock market which just prices have taken a specific trend until they moved to another one for its up or down. This means that the volatility characteristic of financial market requires the rational investor an argument led towards the adoption of planned acts to gain greater benefit in the goal of wealth maximizing. There is no possibility to achieve this goal without the burden of uncertainty and the risk of systematic fluctuations of investment returns in the financial market after the facts of  efficient diversification have pro

... Show More
View Publication Preview PDF
Crossref