With the proliferation of both Internet access and data traffic, recent breaches have brought into sharp focus the need for Network Intrusion Detection Systems (NIDS) to protect networks from more complex cyberattacks. To differentiate between normal network processes and possible attacks, Intrusion Detection Systems (IDS) often employ pattern recognition and data mining techniques. Network and host system intrusions, assaults, and policy violations can be automatically detected and classified by an Intrusion Detection System (IDS). Using Python Scikit-Learn the results of this study show that Machine Learning (ML) techniques like Decision Tree (DT), Naïve Bayes (NB), and K-Nearest Neighbor (KNN) can enhance the effectiveness of an Intrusion Detection System (IDS). Success is measured by a variety of metrics, including accuracy, precision, recall, F1-Score, and execution time. Applying feature selection approaches such as Analysis of Variance (ANOVA), Mutual Information (MI), and Chi-Square (Ch-2) reduced execution time, increased detection efficiency and accuracy, and boosted overall performance. All classifiers achieve the greatest performance with 99.99% accuracy and the shortest computation time of 0.0089 seconds while using ANOVA with 10% of features.
Background: The present in-vitro study was undertaken to evaluate and compare fracture resistance of weakened endodontically treated premolars with class II MOD cavities restored with different bulk fill composite restorations (EverX posterior, Alert, Tetric EvoCeram Bulk Fill, and SDR). The type and mode of fracture were also assessed for all the experimental groups. Materials and Method: Forty-eight human adult maxillary premolar teeth were selected for this study. Standardized extensive class II MOD cavities with endodontic treatment were prepared for all teeth, except those that were saved as intact control. The teeth were divided into six groups of eight teeth each (n=8): (Group 1) intact control group, (Group 2) unrestored teeth with
... Show MoreObjective: To evaluate the effectiveness of educational program on female students’ knowledge toward premenstrual syndrome.
Methodology: A quasi-experimental design study conducing on (140) student purposely in four secondary schools at Al-sadder city (70) student for study group and (70) for control group. The prevalence of PMS selected through American College of Obstetricians and Gynecologists (ACOG) (2015) criterias to select PMS students before program. The education program were set in four steps, the first step (pre-test) is to assess the knowledge , before the implementation of the program, the second step is implementing the program, following two steps post-test I and II between each test two weeks. Validity is determined
Aromatic Schiff-bases are known to have antibacterial activity, but most of these compounds are sparingly soluble in water. The present work describes the synthesis of new Schiff-bases derived from branched aminosugars. Treatment of 3-Amino-3-Cyano-3-Deoxy-1,2:5,6-Di-O-Isopropylene-α-D-Allofuranose (1) with the aldehydes (2) under reflux in methanol afforded the Schiff-bases (3) in good yields. The new Schiff-bases were in accord with their NMR, IR spectral data and elemental analysis.
The present study provides a new insight into valuable information on the diverse structure of the Anisakid population and discusses the limited species richness in the Nemipterus japonicus (Bloch,1791) (Perciformes, Nemiperidae). The fishing area consists of various locations in the Arabian Gulf (29°58 0 33 00 N48°28 0 20 E). A total of 315 marine fish were examined, (n=287) were infected. Larval stages (n= 763) encysted within the mesenteries peritoneum and viscera of fish organs were isolated, with a prevalence of 91.11% of infection and, the intensity was 2.65. Molecular analysis was carried out on thirty individuals who have examined the morphology and showed some appearance differences, by amplifying internal transcribed spacers
... Show MoreObjectives: To determine the effectiveness of the educational program on nursing staff knowledge about infection control measures at the Intensive Care Unit in Al-Diwaniya Teaching Hospital.
Methodology: A pre-experimental design (one group design: pre-test and post-test) was used. This study was conducted in Al-Diwaniya Teaching Hospital for the period from ( 20th February to 5th March, 2020) on a non-probability (purposive) sample consisting of (25 nurses) working in ICU. A questionnaire was built as a data collection tool and consisted of two parts:
First part: The demographic characteristics of the nursing staff (age, gender, level of education, years of experien
... Show Morea laser ablation Q-switched Nd: YAG laser with a wave-length of 355 nm at a variety of laser pulse energies (E) and deposited on porous silicon (PS). Optical emission spectrometer was used to diagnosed medium air to study gold plasma characteristics and prepared Au nanoparticles. The laser pulse energy influence has been studied on the plasma characteristics in air. The data showed the emergence of the ionic (Au II) spectral emission lines in the gold plasma emission spectrum. XRD has been utilized to examine structural characteristics. Moreover, AFM results 37.2 nm as the mean value of the diameter that is coordinated in a shape similar to the rod that appears for Au NPs, in addition to that, TEM has been an indication of the fact that syn
... Show MoreThe flexible joint robot manipulators provide various benefits, but also present many control challenges such as nonlinearities, strong coupling, vibration, etc. This paper proposes optimal second order integral sliding mode control (OSOISMC) for a single link flexible joint manipulator to achieve robust and smooth performance. Firstly, the integral sliding mode control is designed, which consists of a linear quadratic regulator (LQR) as a nominal control, and switching control. This control guarantees the system robustness for the entire process. Then, a nonsingularterminal sliding surface is added to give a second order integral sliding mode control (SOISMC), which reduces chartering effect and gives the finite time convergence as well. S
... Show MoreThis Book is intended to be textbook studied for undergraduate course in multivariate analysis. This book is designed to be used in semester system. In order to achieve the goals of the book, it is divided into the following chapters. Chapter One introduces matrix algebra. Chapter Two devotes to Linear Equation System Solution with quadratic forms, Characteristic roots & vectors. Chapter Three discusses Partitioned Matrices and how to get Inverse, Jacobi and Hessian matrices. Chapter Four deals with Multivariate Normal Distribution (MVN). Chapter Five concern with Joint, Marginal and Conditional Normal Distribution, independency and correlations. Many solved examples are intended in this book, in addition to a variety of unsolved relied pro
... Show MoreThis Book is intended to be textbook studied for undergraduate course in multivariate analysis. This book is designed to be used in semester system. In order to achieve the goals of the book, it is divided into the following chapters. Chapter One introduces matrix algebra. Chapter Two devotes to Linear Equation System Solution with quadratic forms, Characteristic roots & vectors. Chapter Three discusses Partitioned Matrices and how to get Inverse, Jacobi and Hessian matrices. Chapter Four deals with Multivariate Normal Distribution (MVN). Chapter Five concern with Joint, Marginal and Conditional Normal Distribution, independency and correlations. Many solved examples are intended in this book, in addition to a variety of unsolved relied pro
... Show MoreAbstract
This paper presents an intelligent model reference adaptive control (MRAC) utilizing a self-recurrent wavelet neural network (SRWNN) to control nonlinear systems. The proposed SRWNN is an improved version of a previously reported wavelet neural network (WNN). In particular, this improvement was achieved by adopting two modifications to the original WNN structure. These modifications include, firstly, the utilization of a specific initialization phase to improve the convergence to the optimal weight values, and secondly, the inclusion of self-feedback weights to the wavelons of the wavelet layer. Furthermore, an on-line training procedure was proposed to enhance the control per
... Show More