With the proliferation of both Internet access and data traffic, recent breaches have brought into sharp focus the need for Network Intrusion Detection Systems (NIDS) to protect networks from more complex cyberattacks. To differentiate between normal network processes and possible attacks, Intrusion Detection Systems (IDS) often employ pattern recognition and data mining techniques. Network and host system intrusions, assaults, and policy violations can be automatically detected and classified by an Intrusion Detection System (IDS). Using Python Scikit-Learn the results of this study show that Machine Learning (ML) techniques like Decision Tree (DT), Naïve Bayes (NB), and K-Nearest Neighbor (KNN) can enhance the effectiveness of an Intrusion Detection System (IDS). Success is measured by a variety of metrics, including accuracy, precision, recall, F1-Score, and execution time. Applying feature selection approaches such as Analysis of Variance (ANOVA), Mutual Information (MI), and Chi-Square (Ch-2) reduced execution time, increased detection efficiency and accuracy, and boosted overall performance. All classifiers achieve the greatest performance with 99.99% accuracy and the shortest computation time of 0.0089 seconds while using ANOVA with 10% of features.
The bit record is a part from the daily drilling report which is contain information about the type and the number of the bit that is used to drill the well, also contain data about the used weight on bit WOB ,revolution per minute RPM , rate of penetration ROP, pump pressure ,footage drilled and bit dull grade. Generally we can say that the bit record is a rich brief about the bit life in the hole. The main purpose of this research is to select the suitable bit to drill the next oil wells because the right bit selection avoid us more than one problems, on the other hand, the wrong bit selection cause more than one problem. Many methods are related to bit selection, this research is familiar with four of thos
... Show MoreThe porosity of materials is important in many applications, products and processes, such as electrochemical devices (electrodes, separator, active components in batteries), porous thin film, ceramics, soils, construction materials, ..etc. This can be characterized in many different methods, and the most important methods for industrial purposes are the N2 gas adsorption and mercury porosimetry. In the present paper, both of these techniques have been used to characterize some of Iraqi natural raw materials deposits. These are Glass Sand, Standard Sand, Flint Clay and Bentonite. Data from both analyses on the different types of natural raw materials deposits are critically examined and discussed. The results of specific surface are
... Show MoreThe topic of research (women and ideology in the feature film) is a series of researches addressed by the researcher on the subject of women in the feature film through studying the ideology as a thought and political system not only limited to the world of men, but women had a significant contribution in this area. The research identified the problem and its need as well as the objectives of the research and clarified its limits and importance. The research also identified the theoretical framework, which included the following axes: personality and ideology, film and ideology, then women and ideology in the film.
After the completion of the theoretical framework, the research concluded a set of indicators of the theoretic
... Show MoreThe present research is aimed to know the levels of geometrical thinking of college of education " Ibn Al Haitham students I second class" . The sample of the research consists of ( 50 ) male & female students , that were chosen randomly during the academic year 2002-2003 .
To verify the aim of the study , the researcher reviewed the previous cognitive literature , and limited his study to the ( comprehending analytic , ordinal , and inferential ) levels of geometrical thinking .
He constructed a test that was consisted of ( 25 ) items . The test &nb
... Show MoreImage Fusion is being used to gather important data from such an input image array and to place it in a single output picture to make it much more meaningful & usable than either of the input images. Image fusion boosts the quality and application of data. The accuracy of the image that has fused depending on the application. It is widely used in smart robotics, audio camera fusion, photonics, system control and output, construction and inspection of electronic circuits, complex computer, software diagnostics, also smart line assembling robots. In this paper provides a literature review of different image fusion techniques in the spatial domain and frequency domain, such as averaging, min-max, block substitution, Intensity-Hue-Saturation(IH
... Show MoreAchieving reliable operation under the influence of deep-submicrometer noise sources including crosstalk noise at low voltage operation is a major challenge for network on chip links. In this paper, we propose a coding scheme that simultaneously addresses crosstalk effects on signal delay and detects up to seven random errors through wire duplication and simple parity checks calculated over the rows and columns of the two-dimensional data. This high error detection capability enables the reduction of operating voltage on the wire leading to energy saving. The results show that the proposed scheme reduces the energy consumption up to 53% as compared to other schemes at iso-reliability performance despite the increase in the overhead number o
... Show MoreThis study aims to determine the prevalence of Entamoeba histolytica, Entamoeba dispar and
Entamoeba moshkovskii by three methods of diagnosis (microscopic examination, cultivation and PCR) that
were compared to obtain an accurate diagnosis of Entamoeba spp. during amoebiasis. Total (n=150) stool
samples related to patients were (n = 100) and healthy controls (n= 50). Clinically diagnosed stool samples
(n=100) were collected from patients attending the consultant clinics of different hospitals in Basrah during
the period from January 2018 to January 2019. The results showed that 60% of collected samples were
positive in a direct microscopic examination. All samples were cultivated on different media; the Bra
In this paper, we used four classification methods to classify objects and compareamong these methods, these are K Nearest Neighbor's (KNN), Stochastic Gradient Descentlearning (SGD), Logistic Regression Algorithm(LR), and Multi-Layer Perceptron (MLP). Weused MCOCO dataset for classification and detection the objects, these dataset image wererandomly divided into training and testing datasets at a ratio of 7:3, respectively. In randomlyselect training and testing dataset images, converted the color images to the gray level, thenenhancement these gray images using the histogram equalization method, resize (20 x 20) fordataset image. Principal component analysis (PCA) was used for feature extraction, andfinally apply four classification metho
... Show More