With the proliferation of both Internet access and data traffic, recent breaches have brought into sharp focus the need for Network Intrusion Detection Systems (NIDS) to protect networks from more complex cyberattacks. To differentiate between normal network processes and possible attacks, Intrusion Detection Systems (IDS) often employ pattern recognition and data mining techniques. Network and host system intrusions, assaults, and policy violations can be automatically detected and classified by an Intrusion Detection System (IDS). Using Python Scikit-Learn the results of this study show that Machine Learning (ML) techniques like Decision Tree (DT), Naïve Bayes (NB), and K-Nearest Neighbor (KNN) can enhance the effectiveness of an Intrusion Detection System (IDS). Success is measured by a variety of metrics, including accuracy, precision, recall, F1-Score, and execution time. Applying feature selection approaches such as Analysis of Variance (ANOVA), Mutual Information (MI), and Chi-Square (Ch-2) reduced execution time, increased detection efficiency and accuracy, and boosted overall performance. All classifiers achieve the greatest performance with 99.99% accuracy and the shortest computation time of 0.0089 seconds while using ANOVA with 10% of features.
There are many events that took place in Al Mosul province between 2013 and 2018. These events led to many changes in the area under study. These changes involved a decrease in agricultural crops and water due to the population leaving the area. Therefore, it is imperative that planners, decision-makers, and development officials intervene in order to restore the region's activity in terms of environment and agriculture. The aim of this research is to use remote sensing (RS) technique and geographic information system (GIS) to detect the change that occurred in the mentioned period. This was achieved through the use of the ArcGIS software package for the purpose of assessing the state of lands of agricultural crops and
... Show MoreData mining has the most important role in healthcare for discovering hidden relationships in big datasets, especially in breast cancer diagnostics, which is the most popular cause of death in the world. In this paper two algorithms are applied that are decision tree and K-Nearest Neighbour for diagnosing Breast Cancer Grad in order to reduce its risk on patients. In decision tree with feature selection, the Gini index gives an accuracy of %87.83, while with entropy, the feature selection gives an accuracy of %86.77. In both cases, Age appeared as the most effective parameter, particularly when Age<49.5. Whereas Ki67 appeared as a second effective parameter. Furthermore, K- Nearest Neighbor is based on the minimum err
... Show MoreData mining has the most important role in healthcare for discovering hidden relationships in big datasets, especially in breast cancer diagnostics, which is the most popular cause of death in the world. In this paper two algorithms are applied that are decision tree and K-Nearest Neighbour for diagnosing Breast Cancer Grad in order to reduce its risk on patients. In decision tree with feature selection, the Gini index gives an accuracy of %87.83, while with entropy, the feature selection gives an accuracy of %86.77. In both cases, Age appeared as the most effective parameter, particularly when Age<49.5. Whereas Ki67 appeared as a second effective parameter. Furthermore, K- Nearest Neighbor is based on the minimu
... Show MoreCost is the essence of any production process for it is one of the requirements for the continuity of activities so as to increase the profitability of the economic unit and to support the competitive situation in the market. Therefore, there should be an overall control to reduce the cost without compromising the product quality; to achieve this, the management should have detailed credible and reliable information about the cost to be measured, collected, understood and to analyze the causes for the spread of deviations and obstacles the management faces, and to search for the factors that trigger the emergence of these deviations and obstacles
The meniscus has a crucial function in human anatomy, and Magnetic Resonance Imaging (M.R.I.) plays an essential role in meniscus assessment. It is difficult to identify cartilage lesions using typical image processing approaches because the M.R.I. data is so diverse. An M.R.I. data sequence comprises numerous images, and the attributes area we are searching for may differ from each image in the series. Therefore, feature extraction gets more complicated, hence specifically, traditional image processing becomes very complex. In traditional image processing, a human tells a computer what should be there, but a deep learning (D.L.) algorithm extracts the features of what is already there automatically. The surface changes become valuable when
... Show MoreBackground: Legionella pneumophila (L. pneumophila) is gram-negative bacterium, which causes Legionnaires’ disease as well as Pontiac fever. Objective: To determine the frequency of Legionella pneumophila in pneumonic patients, to determine the clinical utility of diagnosing Legionella pneumonia by urinary antigen testing (LPUAT) in terms of sensitivity and specificity, to compares the results obtained from patients by urinary antigen test with q Real Time PCR (RT PCR) using serum samples and to determine the frequency of serogroup 1 and other serogroups of L. pneumophila. Methods: A total of 100 pneumonic patients (community acquired pneumonia) were enrolled in this study during a period between October 2016 to April 2017; 92 sam
... Show MoreABSTRICT:
This study is concerned with the estimation of constant and time-varying parameters in non-linear ordinary differential equations, which do not have analytical solutions. The estimation is done in a multi-stage method where constant and time-varying parameters are estimated in a straight sequential way from several stages. In the first stage, the model of the differential equations is converted to a regression model that includes the state variables with their derivatives and then the estimation of the state variables and their derivatives in a penalized splines method and compensating the estimations in the regression model. In the second stage, the pseudo- least squares method was used to es
... Show MoreDetermining the actual amounts of active ingredients in various pharmaceutical commercial forms is still receiving a lot of attention. Two flow injection analysis (FIA) methods were suggested for determination of mesalazine (MES) in pharmaceutical forms. Normal and reverse FIA systems (nFIA and rFIA) combined with UV-Vis spectrophotometric technique were used for the analysis. The methods involved using two mods of FIA systems for measuring a colored product result from coupling of MES with 2,2'-dihydroxybiphenyl after oxidized with sodium periodate in alkaline medium. The absorbance of the red colored dye was measured at maximum wavelength of 500 nm. The calibration graphs for MES were linear in the ranges 2.5-200 and 0.5-60 µg/mL with
... Show More