Preferred Language
Articles
/
9hdcWZIBVTCNdQwC6azZ
Efficient Intrusion Detection Through the Fusion of AI Algorithms and Feature Selection Methods
...Show More Authors

With the proliferation of both Internet access and data traffic, recent breaches have brought into sharp focus the need for Network Intrusion Detection Systems (NIDS) to protect networks from more complex cyberattacks. To differentiate between normal network processes and possible attacks, Intrusion Detection Systems (IDS) often employ pattern recognition and data mining techniques. Network and host system intrusions, assaults, and policy violations can be automatically detected and classified by an Intrusion Detection System (IDS). Using Python Scikit-Learn the results of this study show that Machine Learning (ML) techniques like Decision Tree (DT), Naïve Bayes (NB), and K-Nearest Neighbor (KNN) can enhance the effectiveness of an Intrusion Detection System (IDS). Success is measured by a variety of metrics, including accuracy, precision, recall, F1-Score, and execution time. Applying feature selection approaches such as Analysis of Variance (ANOVA), Mutual Information (MI), and Chi-Square (Ch-2) reduced execution time, increased detection efficiency and accuracy, and boosted overall performance. All classifiers achieve the greatest performance with 99.99% accuracy and the shortest computation time of 0.0089 seconds while using ANOVA with 10% of features.

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Fri Aug 05 2016
Journal Name
Wireless Communications And Mobile Computing
A comparison study on node clustering techniques used in target tracking WSNs for efficient data aggregation
...Show More Authors

Wireless sensor applications are susceptible to energy constraints. Most of the energy is consumed in communication between wireless nodes. Clustering and data aggregation are the two widely used strategies for reducing energy usage and increasing the lifetime of wireless sensor networks. In target tracking applications, large amount of redundant data is produced regularly. Hence, deployment of effective data aggregation schemes is vital to eliminate data redundancy. This work aims to conduct a comparative study of various research approaches that employ clustering techniques for efficiently aggregating data in target tracking applications as selection of an appropriate clustering algorithm may reflect positive results in the data aggregati

... Show More
View Publication
Scopus (30)
Crossref (23)
Scopus Clarivate Crossref
Publication Date
Mon Apr 30 2018
Journal Name
Journal Of Theoretical And Applied Information Technology
An efficient artificial fish swarm algorithm with harmony search for scheduling in flexible job-shop problem
...Show More Authors

Flexible job-shop scheduling problem (FJSP) is one of the instances in flexible manufacturing systems. It is considered as a very complex to control. Hence generating a control system for this problem domain is difficult. FJSP inherits the job-shop scheduling problem characteristics. It has an additional decision level to the sequencing one which allows the operations to be processed on any machine among a set of available machines at a facility. In this article, we present Artificial Fish Swarm Algorithm with Harmony Search for solving the flexible job shop scheduling problem. It is based on the new harmony improvised from results obtained by artificial fish swarm algorithm. This improvised solution is sent to comparison to an overall best

... Show More
View Publication Preview PDF
Scopus (3)
Scopus
Publication Date
Mon Jun 01 2020
Journal Name
Journal Of The College Of Languages (jcl)
The Labyrinths of the Contemporary French Novel Through the Texts of Patrick Modiano: Les Labyrinthes du Roman Français Contemporain à travers l’Œuvre de Patrick Modiano
...Show More Authors

The current paper aims to study the different forms by which the theme of labyrinth imposes itself as a preferred narrative structure in the novels of the French writer Patrick Modiano. Theoretically speaking, the current research paper will limit itself to the theoretical framework of the textual poetics which relies on the study of literary texts without paying much attention, neither to the context, nor to the life of its author. The analysis of the strong and varied links that Modiano's novels establish with labyrinth represents a field which has not received adequate attention by the critical studies dedicated to this French writer. As it will be shown throughout the current paper, Modiano views labyrint

... Show More
View Publication Preview PDF
Crossref
Publication Date
Tue Dec 11 2018
Journal Name
Iraqi National Journal Of Nursing Specialties
Detection of Hypertension among Cardiac Diseases Inpatients at Kirkuk City Hospitals
...Show More Authors

Objectives of the study: The main objective of the study is to assess the prevalence of hypertension among
cardiac diseases patients and to fiend out relation ship between hypertension and cardiovascular diseases.
Methodology: A descriptive study, using interviewer and questionnaire technique was conducted on cardiac
diseases inpatients of clinic unite at Kirkuk and Azady hospitals from 17th ,June ,2012 to 1st, March , 2013.
Non – probability (purposive) sample of (148) adult patients, (81) females and (67) males with heart disease are
selected from inpatients of clinic unite at Kirkuk and Azady hospitals at kirkuk city. Questionnaire was
developed to assess the items which are related to heart disease patient's (Dise

... Show More
View Publication Preview PDF
Publication Date
Sat Jun 01 2013
Journal Name
Journal Of Economics And Administrative Sciences
Comparison between some well- Known methods to estimate the parameter of the proposed method of measurement and the reliability of the distribution function with two parameters Rally by simulation
...Show More Authors

 

 

Abstract

            Rayleigh distribution is one of the important distributions used for analysis life time data, and has applications in reliability study and physical interpretations. This paper introduces four different methods to estimate the scale parameter, and also estimate reliability function; these methods are Maximum Likelihood, and Bayes and Modified Bayes, and Minimax estimator under squared error loss function, for the scale and reliability function of the generalized Rayleigh distribution are obtained. The comparison is done through simulation procedure, t

... Show More
View Publication Preview PDF
Crossref
Publication Date
Sun Aug 13 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Estimation Optimal Threshold Value for Image Edge Detection
...Show More Authors

      A new approach presented in this study to determine the optimal edge detection threshold value. This approach is base on extracting small homogenous blocks from unequal mean targets. Then, from these blocks we generate small image with known edges (edges represent the lines between the contacted blocks). So, these simulated edges can be assumed as true edges .The true simulated edges, compared with the detected edges in the small generated image is done by using different thresholding values. The comparison based on computing mean square errors between the simulated edge image and the produced edge image from edge detector methods. The mean square error computed for the total edge image (Er), for edge regio

... Show More
View Publication Preview PDF
Publication Date
Sun Nov 01 2015
Journal Name
Karbala International Journal Of Modern Science
Batch and flow injection spectrophotometric methods for the determination of barbituric acid in aqueous samples via oxidative coupling with 4-aminoantipyrine
...Show More Authors

A batch and flow injection (FI) spectrophotometric methods are described for the determination of barbituric acid in aqueous and urine samples. The method is based on the oxidative coupling reaction of barbituric acid with 4-aminoantipyrine and potassium iodate to form purple water soluble stable product at λ 510 nm. Good linearity for both methods was obtained ranging from 2 to 60 μg mL−1, 5–100 μg mL−1 for batch and FI techniques, respectively. The limit of detection (signal/noise = 3) of 0.45 μg mL−1 for batch method and 0.48 μg mL−1 for FI analysis was obtained. The proposed methods were applied successfully for the determination of barbituric acid in tap water, river water, and urine samples with good recoveries of 99.92

... Show More
View Publication
Scopus (13)
Crossref (5)
Scopus Crossref
Publication Date
Fri Dec 01 2017
Journal Name
Journal Of Economics And Administrative Sciences
Multi – Linear in Multiple Nonparametric Regression , Detection and Treatment Using Simulation
...Show More Authors

             It is the regression analysis is the foundation stone of knowledge of statistics , which mostly depends on the ordinary least square method , but as is well known that the way the above mentioned her several conditions to operate accurately and the results can be unreliable , add to that the lack of certain conditions make it impossible to complete the work and analysis method and among those conditions are the multi-co linearity problem , and we are in the process of detected that problem between the independent variables using farrar –glauber test , in addition to the requirement linearity data and the lack of the condition last has been resorting to the

... Show More
View Publication Preview PDF
Crossref
Publication Date
Mon Mar 01 2021
Journal Name
Al-khwarizmi Engineering Journal
Hurst Exponent and Tsallis Entropy Markers for Epileptic Detection from Children
...Show More Authors

The aim of the present study was to distinguish between healthy children and those with epilepsy by electroencephalography (EEG). Two biomarkers including Hurst exponents (H) and Tsallis entropy (TE) were used to investigate the background activity of EEG of 10 healthy children and 10 with epilepsy. EEG artifacts were removed using Savitzky-Golay (SG) filter. As it hypothesize, there was a significant changes in irregularity and complexity in epileptic EEG in comparison with healthy control subjects using t-test (p< 0.05). The increasing in complexity changes were observed in H and TE results of epileptic subjects make them suggested EEG biomarker associated with epilepsy and a reliable tool for detection and identification of this di

... Show More
View Publication Preview PDF
Crossref (2)
Crossref
Publication Date
Wed Dec 13 2023
Journal Name
2023 3rd International Conference On Intelligent Cybernetics Technology &amp; Applications (icicyta)
GPT-4 versus Bard and Bing: LLMs for Fake Image Detection
...Show More Authors

The recent emergence of sophisticated Large Language Models (LLMs) such as GPT-4, Bard, and Bing has revolutionized the domain of scientific inquiry, particularly in the realm of large pre-trained vision-language models. This pivotal transformation is driving new frontiers in various fields, including image processing and digital media verification. In the heart of this evolution, our research focuses on the rapidly growing area of image authenticity verification, a field gaining immense relevance in the digital era. The study is specifically geared towards addressing the emerging challenge of distinguishing between authentic images and deep fakes – a task that has become critically important in a world increasingly reliant on digital med

... Show More
View Publication Preview PDF
Scopus (1)
Crossref (1)
Scopus Crossref