We introduce the notion of interval value fuzzy ideal of TM-algebra as a generalization of a fuzzy ideal of TM-algebra and investigate some basic properties. Interval value fuzzy ideals and T-ideals are defined and several examples are presented. The relation between interval value fuzzy ideal and fuzzy T-ideal is studied. Abstract We introduce the notion of interval value fuzzy ideal of TM-algebra as a generalization of a fuzzy ideal of TM-algebra and investigate some basic properties. Interval value fuzzy ideals and T- ideals are defined and several examples are presented. The relation between interval value fuzzy ideal and fuzzy T-ideal is studied.
In this paper, the concepts of -sequence prime ideal and -sequence quasi prime ideal are introduced. Some properties of such ideals are investigated. The relations between -sequence prime ideal and each of primary ideal, -prime ideal, quasi prime ideal, strongly irreducible ideal, and closed ideal, are studied. Also, the ideals of a principal ideal domain are classified into quasi prime ideals and -sequence quasi prime ideals.
This paper discusses the limitation of both Sequence Covering Array (SCA) and Covering Array (CA) for testing reactive system when the order of parameter-values is sensitive. In doing so, this paper proposes a new model to take the sequence values into consideration. Accordingly, by superimposing the CA onto SCA yields another type of combinatorial test suite termed Multi-Valued Sequence Covering Array (MVSCA) in a more generalized form. This superimposing is a challenging process due to NP-Hardness for both SCA and CA. Motivated by such a challenge, this paper presents the MVSCA with a working illustrative example to show the similarities and differences among combinatorial testing methods. Consequently, the MVSCA is a
... Show MoreIn this paper, we define a cubic positive implicative-ideal, a cubic implicative-ideal and a cubic commutative-ideal of a semigroup in KU-algebra as a generalization of a fuzzy (positive implicative-ideal, an implicative-ideal and a commutative-ideal) of a semigroup in KU-algebra. Some relations between these types of cubic ideals are discussed. Also, some important properties of these ideals are studied. Finally, some important theories are discussed. It is proved that every cubic commutative-ideal, cubic positive implicative-ideal, and cubic implicative-ideal are a cubic ideal, but not conversely. Also, we show that if Θ is a cubic positive implicative-ideal and a cubic commutative-ideal then Θ is a cubic implicative-ideal. Some exam
... Show MoreThe purpose of this paper is to prove the following result : Let R be a 2-torsion free prime *-ring , U a square closed *-Lie ideal, and let T: RR be an additive mapping. Suppose that 3T(xyx) = T(x) y*x* + x*T(y)x* + x*y*T(x) and x*T(xy+yx)x* = x*T(y)x*2 + x*2T(y)x* holds for all pairs x, y U , and T(u) U, for all uU, then T is a reverse *-centralizer.
The aim of this investigation is to present the idea of SAH – ideal , closed SAH – ideal and closed SAH – ideal with respect to an element , and s- of BH – algebra .
We detail and show theorems which regulate the relationship between these ideas and provide some examples in BH – algebra .
The research is an article that teaches some classes of fully stable Banach - Å modules. By using Unital algebra studies the properties and characterizations of all classes of fully stable Banach - Å modules. All the results are existing, and they've been listed to complete the requested information.
The main objective of this work is to generalize the concept of fuzzy algebra by introducing the notion of fuzzy algebra. Characterization and examples of the proposed generalization are presented, as well as several different properties of fuzzy algebra are proven. Furthermore, the relationship between fuzzy algebra and fuzzy algebra is studied, where it is shown that the fuzzy algebra is a generalization of fuzzy algebra too. In addition, the notion of restriction, as an important property in the study of measure theory, is studied as well. Many properties of restriction of a nonempty family of fuzzy subsets of fuzzy power set are investigated and it is shown that the restriction of fuzzy algebra is fuzzy algebra too.
In this paper, the structure of and have been introduced and studied. We also obtain that a is of a if and only if there exists an on such that . In addition, we obtain that of if and only if there is an on such that , where are subspaces of with eigenvalues 1 and −1, respectively. We also find t that the existence of on implies that there exists a compatible under appropriate condition.
In this work, we present the notion of a multiplier on AT-algebra and investigate several properties. Also, some theorems and examples are discussed. The notions of the kernel and the image of multipliers are defined. After that, some propositions related to isotone and regular multipliers are proved. Finally, the Left and the Right derivations of the multiplier are obtained
Tow results are proved. The first gives necessary and ullicient
conditions for a permutation group to have the prope1ty that each of its rational - valued character can be written as (integral) linear combination of characters induced from the principal characters of certain subgroup. The mher presents that this property is extendable to direct product of groups.
Examples give.