Objectives The strategies of tissue-engineering led to the development of living cell-based therapies to repair lost or damaged tissues, including periodontal ligament and to construct biohybrid implant. This work aimed to isolate human periodontal ligament stem cells (hPDLSCs) and implant them on fabricated polycaprolactone (PCL) for the regeneration of natural periodontal ligament (PDL) tissues. Methods hPDLSCs were harvested from extracted human premolars, cultured, and expanded to obtain PDL cells. A PDL-specific marker (periostin) was detected using an immunofluorescent assay. Electrospinning was applied to fabricate PCL at three concentrations (13%, 16%, and 20% weight/volume) in two forms, which were examined through field emission scanning electron microscopy (FESEM). The isolated hPDLSCs were implanted on the fabricated PCL. After 21 days, FESEM was conducted to evaluate the implanted scaffolds, and an MTT assay was performed to characterize the biological response of the PCL scaffold at different cell exposure durations (24, 48, and 72 h). Results Periostin was expressed in the expanded PDL cells, and this result revealed that 20% weight/volume PCL scaffold with a pore size of more than 10 μm was the best. The growth rates of PDLSCs were high. Cytotoxicity test of fabricated PCL scaffold demonstrated no significant change in the cell viability when compared with the negative control and no deteriorating or inhibitory effect on growth after different durations. Conclusions A cell sheet was successfully formed by using PCL as a scaffold to cover dental implants and promote PDL cell attachment, proliferation, and growth for biohybrid implant construction.
Drilling deviated wells is a frequently used approach in the oil and gas industry to increase the productivity of wells in reservoirs with a small thickness. Drilling these wells has been a challenge due to the low rate of penetration (ROP) and severe wellbore instability issues. The objective of this research is to reach a better drilling performance by reducing drilling time and increasing wellbore stability.
In this work, the first step was to develop a model that predicts the ROP for deviated wells by applying Artificial Neural Networks (ANNs). In the modeling, azimuth (AZI) and inclination (INC) of the wellbore trajectory, controllable drilling parameters, unconfined compressive strength (UCS), formation
... Show MoreManufacturing systems of the future foresee the use of intelligent vehicles, optimizing and navigating. The navigational problem is an important and challenging problem in the field of robotics. The robots often find themselves in a situation where they must find a trajectory to another position in their environment, subject to constraints posed by obstacles and the capabilities of the robot itself. On-line navigation is a set of algorithms that plans and executes a trajectory at the same time. The system adopted in this research searches for a robot collision-free trajectory in a dynamic environment in which obstacles can move while the robot was moving toward the target. So, the ro
... Show MoreCO2 Laser (10600nm) is the recent method in the management of challenging skin scar resulting from trauma, burn and surgical wound. The aim of this study was to evaluate the efficacy & safety of fractional CO2 laser (10600nm) in treatment of skin scar. Materials and Methods:Twenty patients with different types of scars treated with fractional CO2 (10600nm) laser, (10 patients) were given additional intralesional Triamcinolone. Results: All of the twenty patients included in this study showed some sort of improvements in scar texture, height and pliability and all of the ten patients who received intralesional Triamcinolone after laser show complete satisfaction. Conclusion:Fractional CO2 (10600nm) laser can be used as alternative, ef
... Show MoreAn assembled pulsed Nd:YAG laser-robot system for spot welding similar and dissimilar metals is presented in this paper. The study evaluates the performance of this system through investigating the possibility and accuracy of executing laser spot welding of 0.2 mm in thickness stainless steel grade AISI302 to 0.5 mm in thickness low carbon steel grade AISI1008. The influence of laser beam parameters (peak power, pulse energy, pulse duration, repetition rate, and focal plane position on the final gained best results are evaluated. Enhancement of the experimental results was carried by a computational simulation using ANSYS FLUENT 6.3 package code.
A study was performed to evaluate heavy metals removal from sewage sludge using lime. The processes of stabilization using alkaline chemicals operating on a simple principle of raising pH to 12 or higher, with sufficient mixing and suitable contact time to ensure that immobilization can reduce heavy metals. A 0.157 m3 tank was designed to treat Al-Rustemeyia wastewater treatment plant sludge. Characteristics of raw sludge were examined through two parameters: pH and heavy metal analysis. Different lime doses of (0- 25) g CaO/100 g sludge were mixed manually with raw sludge in a rotating drum. The samples were analyzed two hours after mixing. pH and heavy metals results were compared with EPA and National Iraqi Stand
... Show MoreThis research has been prepared to isolate and diagnose one of the most important vegetable oils from the plant medical clove is the famous with Alaeugenol oil and used in many pharmaceuticals were the isolation process using a technique ultrasonic extraction and distillation technology simple
The main purpose of this work is the construction of an optical parametric amplifier (OPA) to generate a 629 nm pulsed laser. KTP nonlinear crystals were used for both parametric oscillation and amplification. A singly resonant parametric oscillator (OPO) is constructed to generate a signal of 1.54 μm and idler of 3.4 μm when the OPO system is pumped by 1.064 μm Q – switched Nd: YAG laser. The signal was then mixed with the pumping beam in OPA system to form the wanted wavelength. The obtained optical conversion efficiency was 60%.
The removal of chlorpyrifos pesticide from aqueous solutions was achieved by adsorption using low cost agricultural residue as adsorbent surface; barley husks. Several variables that affect the adsorption were studied including contact time, adsorbent weight, pH, ionic strength, particle size and temperature. The absorbance of the solution before and after adsorption was measured by using UV-Visible spectrophotometer. The equilibrium data was suitable with Langmuir model of adsorption and the linear regression coefficient R2 = 0.9785 at 37.5°C was used to knowledge the best fitting isotherm model. The general shape of the adsorption isotherm of chlorpyrifos on barley husks consistent with (H3-type) on the Giles classification. Several
... Show More