This study presents, for the first time, an innovative Jet Plasma-assisted technique for the green synthesis of TiO₂@Ag core–shell nanoparticles using chard leaf extract as a natural reducing and stabilizing agent. The Jet Plasma provides a highly energetic environment that accelerates nucleation and core–shell formation at low temperatures without toxic precursors. The synthesized nanoparticles exhibited uniform and stable structures, as confirmed by comprehensive characterization techniques including X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), ultraviolet–visible (UV–Vis) spectroscopy, transmission electron microscopy (TEM), and zeta potential analysis. XRD patterns confirmed the crystalline anatase phase of TiO₂ alongside distinct metallic silver phases. TEM images revealed spherical nanoparticles with silver cores measuring 4.5–4.9 nm surrounded by TiO₂ shells of 9–13 nm thickness. Optical analysis showed a surface plasmon resonance peak at 404 nm and a TiO₂ bandgap of approximately 3.0 eV. The nanoparticles demonstrated good colloidal stability with a zeta potential of –13.5 mV and exhibited effective photocatalytic activity in the degradation of organic dyes. Antibacterial evaluation using the broth dilution method revealed potent inhibitory effects against Staphylococcus aureus and Escherichia coli, with inhibition observed at concentrations ranging from 125 to 1000 μg/mL. These findings highlight the potential of these nanostructures for sustainable water treatment and enhanced photocatalytic applications. Highlights
This study shows that it is possible to fabricate and characterize green bimetallic nanoparticles using eco-friendly reduction and a capping agent, which is then used for removing the orange G dye (OG) from an aqueous solution. Characterization techniques such as scanning electron microscopy (SEM), Energy Dispersive Spectroscopy (EDAX), X-Ray diffraction (XRD), and Brunauer-Emmett-Teller (BET) were applied on the resultant bimetallic nanoparticles to ensure the size, and surface area of particles nanoparticles. The results found that the removal efficiency of OG depends on the G‑Fe/Cu‑NPs concentration (0.5-2.0 g.L-1), initial pH (2‑9), OG concentration (10-50 mg.L-1), and temperature (30-50 °C). The batch experiments showed
... Show MoreIn this study, silver-tungsten oxide core–shell nanoparticles (Ag–WO3 NPs) were synthesized by pulsed laser ablation in liquid employing a (1.06 µm) Q-switched Nd:YAG laser, at different Ag colloidal concentration environment (different core concentration). The produced Ag–WO3 core–shell NPs were subjected to characterization using UV–visible spectrophotometry, X-ray diffraction (XRD), transmission electron microscopy (TEM), energy-dispersive spectroscopy, electrical analysis, and photoluminescence PL. The UV–visible spectra exhibited distinct absorption peaks at around 200 and 405 nm, which attributed to the occurrence of surface Plasmon reson
Ag nanoparticles were prepared using Nd:YAG laser from Ag matel in distilled water using different energies laser (100 and 600) mJ using 200 pulses, and study the effect of the preparation conditions on the structural characteristics of and then study the effect of nanoparticles on the rate of killing the two types of bacteria particles (Staph and E.coli). The goal is to prepare the nanoparticle effectively used to kill bacteria.