Modified algae with nano copper oxide (CuO) were used as adsorption media to remove tetracycline (TEC) from aqueous solutions. Functional groups, morphology, structure, and percentages of surfactants before and after adsorption were characterised through Fourier-transform infrared (FTIR), X-ray diffraction (XRD), scanning electron microscopy (SEM), and energy-dispersive spectroscopy (EDS). Several variables, including pH, connection time, dosage, initial concentrations, and temperature, were controlled to obtain the optimum condition. Thermodynamic studies, adsorption isotherm, and kinetics models were examined to describe and recognise the type of interactions involved. Resultantly, the best operation conditions were at pH 7, contact time of 240 min, 5 g/L of dosage, initial concentration of 25 mg/L, and a temperature of 45 °C. The removal percentage of TEC under the optimum condition was 96%. Thermodynamic analysis indicated that the removal efficiency was slightly increased with temperature depending on the positive value of Δ𝐻°, thus indicating that the adsorption phenomenon was endothermic. The Langmuir model fitted the study (R2 = 0.998), demonstrating that the adsorption sites were homogenous. The experimental results were best matched with the second-order kinetic model, implying that chemisorption was the primary process during the adsorption process. Compared to previous research and based on the value of qmax (15.60 mg/g), the biomass was suitable for TEC removal.
BCl3 is toxic gas and its detection is of great importance. Thus, here, B3LYP, M06-2X, and B97D density functionals are utilized for probing the effect of decorating Zn, Cd, and Au on the sensing performance of an AlP nano-sheet (AlPNS) in detecting the BCl3. We predict that the interaction of pure AlPNS with BCl3 is physisorption, and the sensing response (SR) of AlPNS is approximately 9.2. The adsorption energy of BCl3 changes from −4.1 to −18.8, −19.1, and −19.5 kcal/mol by decorating the Zn, Cd, and Au metals into the AlPNS surface, respectively. Also, the corresponding SR meaningfully rises to 40.4, 59.0, and 80.9, indicating that by increasing the atomic number of metals, the sensitivity of metal decorated AlPNS (metal@AlPNS)
... Show MoreOptimizing the Access Point (AP) deployment is of great importance in wireless applications owing the requirement to provide efficient and cost-effective communication. Highly targeted by many researchers and academic industries, Quality of Service (QOS) is an important primary parameter and objective in mind along with AP placement and overall publishing cost. This study proposes and investigates a multi-level optimization algorithm based on Binary Particle Swarm Optimization (BPSO). It aims to an optimal multi-floor AP placement with effective coverage that makes it more capable of supporting QOS and cost effectiveness. Five pairs (coverage, AP placement) of weights, signal threshol
Single-photon detection concept is the most crucial factor that determines the performance of quantum key distribution (QKD) systems. In this paper, a simulator with time domain visualizers and configurable parameters using continuous time simulation approach is presented for modeling and investigating the performance of single-photon detectors operating in Gieger mode at the wavelength of 830 nm. The widely used C30921S silicon avalanche photodiode was modeled in terms of avalanche pulse, the effect of experiment conditions such as excess voltage, temperature and average photon number on the photon detection efficiency, dark count rate and afterpulse probability. This work shows a general repeatable modeling process for significant perform
... Show MoreThis paper focuses on choosing a spatial mixture model with implicitly includes the time to represent the relative risks of COVID-19 pandemic using an appropriate model selection criterion. For this purpose, a more recent criterion so-called the widely Akaike information criterion (WAIC) is used which we believe that its use so limitedly in the context of relative risk modelling. In addition, a graphical method is adopted that is based on a spatial-temporal predictive posterior distribution to select the best model yielding the best predictive accuracy. By applying this model selection criterion, we seek to identify the levels of relative risk, which implicitly represents the determination of the number of the model components o
... Show MoreGenerally, direct measurement of soil compression index (Cc) is expensive and time-consuming. To save time and effort, indirect methods to obtain Cc may be an inexpensive option. Usually, the indirect methods are based on a correlation between some easier measuring descriptive variables such as liquid limit, soil density, and natural water content. This study used the ANFIS and regression methods to obtain Cc indirectly. To achieve the aim of this investigation, 177 undisturbed samples were collected from the cohesive soil in Sulaymaniyah Governorate in Iraq. Results of this study indicated that ANFIS models over-performed the Regression method in estimating Cc with R2 of 0.66 and 0.48 for both ANFIS and Regre
... Show MoreFour subsurface sections and electrical, porosity logs, and gamma-ray logs of the Khasib Formation (age Late Turonian-Lower Coniacian) were studied to identify reservoir characteristics and to evaluate the reservoir properties of the Khasib reservoir units in the East Baghdad oilfield. The lithology of the formation is limestone throughout the whole sequence in all studied wells EB-83, EB-87, EB-92, and EB94. It is bounded conformably from the top by Tanuma Formation and has a conformable lower contact with Kifl Formation. The lower and upper boundaries of the formation were determined using well log analysis, and the formation was divided into three main rock units (Kh1, Kh2, and Kh3), depending on the porosity logs. The porosi
... Show More