Coffee is the most essential drink today, aside from water, the high consumption of coffee and the byproducts of its soluble industries such as spent coffee grounds can have a negative effect on the environment as a source of toxic organic compounds. Therefore, caffeine removal from the spent coffee ground can be applied as a method to limit the effect of its production on the environment. The aim of this study is to determine the kinetics and thermodynamics parameters and develop models for both processes based on the process parameters by using traditional solid-liquid extraction and Ultrasound-assisted extraction methods. The processes were performed at a temperature range of 25 to 55 °C for traditional and ultrasound baths, and experimental time ranged from 5- 60 min. The results demonstrated that under the above conditions, the extraction process applies to the pseudo-first-order reaction, where the rate constant K value increases with temperature. The transition state parameters were also discussed where these parameters indicated that the system of the process exhibited an activated complex formation state resulting in a thermodynamically unfavorable process, and the thermodynamic parameters at the equilibrium state were also evaluated in terms of the obtained yield percentage. The results also showed that the ultrasound-assisted bath process showed a spontaneous behavior at temperatures of 45 °C and 55 °C with D°G of -1192.9703 and - 2725.25 J/mole. On the other hand, for the traditional method, the extraction process was approaching a spontaneous behavior with the temperature increasing where at 25 °C the D°G value was 10379.944 J and at a temperature of 55 °C it reached 8004.26 J/mole.
Wearable sensors are a revolutionary tool in agriculture because they collect accurate data on plant environmental conditions that affect plant growth in real-time. Moreover, this technology is crucial in increasing agricultural sustainability and productivity by improving irrigation strategies and water resource management. This review examines the role of wearable sensors in measuring plant water content, leaf and air humidity, stem flow, plant and air temperature, light, and soil moisture sensors. Wearable sensors are designed to monitor various plant physiological parameters in real-time. These data, obtained through wearable sensors, provide information on plant water use and physiology, making our agricultural choices more informed an
... Show MoreSeparation of Trigonelline, the major alkaloid in fenugreek seeds, is difficult because the extract of these seeds usually contains Trigonelline, choline, mucilage, and steroidal saponins, in addition to some other substances. This study amis to isolate the quaternary ammonium alkaloid (Trigonelline) and choline from fenugreek seeds (Trigonella-foenum graecum L.) which have similar physiochemical properties by modifying of the classical method. Seeds were defatted and then extracted with methanol. The presence of alkaloids was detected by using Mayer's and Dragendorff's reagents. In this work, trigonilline was isolated with traces of choline by subsequent processes of purification using analytical and preparative TLC techniques.
... Show MoreIn this study, nickel cobaltite (NC) nanoparticles were created using the sol-gel process and used as an adsorbent to adsorb methyl green dye (MG) from aqueous solutions. The adequate preparation of nickel cobaltite nanoparticles was verified using FT-IR, SEM, and X-ray diffraction (XRD) studies. The crystalline particle size of NC nanoparticles was 10.53 nm. The effects of a number of experimental variables, such as temperature, adsorbent dosage, and contact time, were examined. The optimal contact time and adsorbent dosage were 120 minutes and 4.5 mg/L, respectively. Four kinetic models—an intraparticle diffusion, a pseudo-first-order equation, a pseudo-second-order equation, and the Boyd equation—were employed to monitor the adsorpti
... Show MoreIn this research, new compounds were synthesized via the reaction of dichloroacetic acid with two moles of piperidine. The novel acid 1 was converted to its ester 2. Acid hydrizide 3 was prepared by the reaction of hydrazine hydrate with new ester 2, which was later used to prepare derivatives of Schiff bases 4-13. In the last step, Schiff bases and thioglycolic acid were reacted to give thiazolidine derivatives 14-23. All these compounds were diagnosed using melting points, FTIR, 1HNMR and mass spectroscopy. Scheme 1 shows all the synthesized compounds' reaction steps and structures. Keywords: Thiazolidine; Schiff bases; biological activity; piperidine; dichloroacetic acid.
The problem of rebellion is considered one of the features of rapid changes that a society undergoes in all spheres and directions of life, especially in the realm of social relations, customs, traditions, values, and principles. Rebellion may manifest itself in rebellion against oneself, against values or traditions, or against social or governmental authority. One may find that submission plays a vital role in all of these interactions. This study deals with the problem of rebellion in the works of two renowned authors: The French Gustave Flaubert and the Israeli Amos Oz, through two main characters who share similar qualities and traits. Emma Bovary and Henna Konin demonstrate this through their rebellion against themselves, their relati
... Show MoreNovel bidentate Schiff bases having nitrogen-sulphur donor sequence was synthesized from condensation of racemate camphor, (R)-camphor and (S)-camphor with Methyl hydrazinecarbodithioate (SMDTC). Its metal complexes were also prepared through the reaction of these ligands with silver and bismuth salts. All complexes were characterized by elemental analyses and various physico-chemical techniques. These Schiff bases behaved as uninegatively charged bidentate ligands and coordinated to the metal ions via ?-nitrogen and thiolate sulphur atoms. The NS Schiff bases formed complexes of general formula, [M(NS)2] or [M(NS)2.H2O] where M is BiIII or AgI, the expected geometry is octahedral for Bi(III) complexes while Ag(I) is expected to oxidized t
... Show MoreIn the present research we the study the deposition of radioactive elements naturally and particularly radioactive radon gas in parts of the body of organisms which are of direct relevance to human life in the city of Baghdad as the samples which were collected from the bones and skin of some kinds of birds and chicken based on the principle that radioactive elements are concentrated always on the bones. We use of this as the exercise detector impact nuclear (CR-39), using the technology Cylindrical diffusion , the results indicated that the largest concentration of radon found in the bone bird Seagull tapered as it was (625 ± 37) Bq.cm-3, and less concentration of radon gas in the chicken bones of Al-kafeel as it was (105 ± 10) Bq.c
... Show MoreThe problem of this research is:
What are the sustainable development goals that received the priority in the press addressing of the newspapers under study?
What are the journalistic arts adopted by these newspapers in addressing the sustainable development goals?
What are the journalistic sources that Arab newspapers depended on when addressing the sustainable development goals?
What are the geographic range the Arab newspapers adopted in addressing the sustainable development goals? The research is categorized into descriptive research, adopting the survey method, and using the content analysis method.
The sample of research was determined by the preparation of the Arabic newspapers (Al-
... Show MoreBiosorption of lead, chromium, and cadmium ions from aqueous solution by dead anaerobic biomass (DAB) was studied in single, binary, and ternary systems with initial concentration of 50 mg/l. The metal-DAB affinity was the same for all systems. The main biosorption mechanisms were complexation and physical adsorption of metallic cations onto natural active functional groups on the cell wall matrix of the DAB. It was found that biosorption of the metallic cations onto DAB cell wall component was a surface process. The main functional groups involved in the metallic cation biosorption were apparently carboxyl, amino, hydroxyle, sulfhydryl, and sulfonate. These groups were part of the DAB cell wall structural polymers. Hydroxyle groups (–O
... Show More