The objective of the study was to identify the effect of the use of the Colb model for the students of the third stage in the College of Physical Education and Sports Sciences, University of Baghdad,As well as to identify the differences between the research groups in the remote tests in learning skills using the model Colb.The researcher used the experimental method and included the sample of the research on the students of the third stage in the College of Physical Education and Sports Science / University of Baghdad by drawing lots, the third division (j) was chosen to represent the experimental group,And the third division (c) to represent the control groupafter the distribution of the sample splitting measure according to the Colb model, the sample was divided into four groups of experimental groups (third (j), 7 (female students), 6 (female students) and third group (c) (7) Students).The researcher used statistical package for social sciences (spss) to address the results of his research,The researcher reached a number of conclusions, the most important of which is that the Colb method has a positive effect on learning some of the technical skills of the gymnastic as well as the positive effect of the style followed by the school material, but the preference was for the Colb method
This research presents a model for surveying networks configuration which is designed and called a Computerized Integrated System for Triangulation Network Modeling (CISTNM). It focuses on the strength of figure as a concept then on estimating the relative error (RE) for the computed side (base line) triangulation element. The CISTNM can compute the maximum elevations of the highest
obstacles of the line of sight, the observational signal tower height, the contribution of each triangulation station with their intervisibility test and analysis. The model is characterized by the flexibility to select either a single figure or a combined figures network option. Each option includes three other implicit options such as: triangles, quadri
Audio-visual detection and recognition system is thought to become the most promising methods for many applications includes surveillance, speech recognition, eavesdropping devices, intelligence operations, etc. In the recent field of human recognition, the majority of the research be- coming performed presently is focused on the reidentification of various body images taken by several cameras or its focuses on recognized audio-only. However, in some cases these traditional methods can- not be useful when used alone such as in indoor surveillance systems, that are installed close to the ceiling and capture images right from above in a downwards direction and in some cases people don't look straight the cameras or it cannot be added in some
... Show MoreIn this paper, a handwritten digit classification system is proposed based on the Discrete Wavelet Transform and Spike Neural Network. The system consists of three stages. The first stage is for preprocessing the data and the second stage is for feature extraction, which is based on Discrete Wavelet Transform (DWT). The third stage is for classification and is based on a Spiking Neural Network (SNN). To evaluate the system, two standard databases are used: the MADBase database and the MNIST database. The proposed system achieved a high classification accuracy rate with 99.1% for the MADBase database and 99.9% for the MNIST database
Among the metaheuristic algorithms, population-based algorithms are an explorative search algorithm superior to the local search algorithm in terms of exploring the search space to find globally optimal solutions. However, the primary downside of such algorithms is their low exploitative capability, which prevents the expansion of the search space neighborhood for more optimal solutions. The firefly algorithm (FA) is a population-based algorithm that has been widely used in clustering problems. However, FA is limited in terms of its premature convergence when no neighborhood search strategies are employed to improve the quality of clustering solutions in the neighborhood region and exploring the global regions in the search space. On the
... Show MoreDetection moving car in front view is difficult operation because of the dynamic background due to the movement of moving car and the complex environment that surround the car, to solve that, this paper proposed new method based on linear equation to determine the region of interest by building more effective background model to deal with dynamic background scenes. This method exploited the permitted region between cars according to traffic law to determine the region (road) that in front the moving car which the moving cars move on. The experimental results show that the proposed method can define the region that represents the lane in front of moving car successfully with precision over 94%and detection rate 86
... Show MoreA hand gesture recognition system provides a robust and innovative solution to nonverbal communication through human–computer interaction. Deep learning models have excellent potential for usage in recognition applications. To overcome related issues, most previous studies have proposed new model architectures or have fine-tuned pre-trained models. Furthermore, these studies relied on one standard dataset for both training and testing. Thus, the accuracy of these studies is reasonable. Unlike these works, the current study investigates two deep learning models with intermediate layers to recognize static hand gesture images. Both models were tested on different datasets, adjusted to suit the dataset, and then trained under different m
... Show MoreA new human-based heuristic optimization method, named the Snooker-Based Optimization Algorithm (SBOA), is introduced in this study. The inspiration for this method is drawn from the traits of sales elites—those qualities every salesperson aspires to possess. Typically, salespersons strive to enhance their skills through autonomous learning or by seeking guidance from others. Furthermore, they engage in regular communication with customers to gain approval for their products or services. Building upon this concept, SBOA aims to find the optimal solution within a given search space, traversing all positions to obtain all possible values. To assesses the feasibility and effectiveness of SBOA in comparison to other algorithms, we conducte
... Show MoreAdverse drug reactions (ADR) are important information for verifying the view of the patient on a particular drug. Regular user comments and reviews have been considered during the data collection process to extract ADR mentions, when the user reported a side effect after taking a specific medication. In the literature, most researchers focused on machine learning techniques to detect ADR. These methods train the classification model using annotated medical review data. Yet, there are still many challenging issues that face ADR extraction, especially the accuracy of detection. The main aim of this study is to propose LSA with ANN classifiers for ADR detection. The findings show the effectiveness of utilizing LSA with ANN in extracting AD
... Show MoreThe availability of low- cost adsorbent namely Al-Khriet ( a substance found in the legs of Typha Domingensis) as an agricultural waste material, for the removal of lead and cadmium from aqueous solution was investigated. In the batch tests experimental parameters were studied, including adsorbent dosage between (0.2-1) g, initial metal ions concentration between (50-200) ppm (single and binary) and contact time (1/2-6) h. The removal percentage of each ion onto Al-Khriet reached equilibrium in about 4 hours. The highest adsorption capacity was for lead (96%) while for cadmium it was (90%) with 50 ppm ions concentration, 1 g dosage of adsorbent and pH 5.5. Adsorption capacity in the binary mixture were reduce at about 8% for lead a
... Show More