This study presents a practical method for solving fractional order delay variational problems. The fractional derivative is given in the Caputo sense. The suggested approach is based on the Laplace transform and the shifted Legendre polynomials by approximating the candidate function by the shifted Legendre series with unknown coefficients yet to be determined. The proposed method converts the fractional order delay variational problem into a set of (n + 1) algebraic equations, where the solution to the resultant equation provides us the unknown coefficients of the terminated series that have been utilized to approximate the solution to the considered variational problem. Illustrative examples are given to show that the recommended approach is applicable and accurate for solving such kinds of problems.
Due to the high mobility and dynamic topology of the FANET network, maintaining communication links between UAVs is a challenging task. The topology of these networks is more dynamic than traditional mobile networks, which raises challenges for the routing protocol. The existing routing protocols for these networks partly fail to detect network topology changes. Few methods have recently been proposed to overcome this problem due to the rapid changes of network topology. We try to solve this problem by designing a new dynamic routing method for a group of UAVs using Hybrid SDN technology (SDN and a distributed routing protocol) with a highly dynamic topology. Comparison of the proposed method performance and two other algorithms is simula
... Show MoreRecently, the phenomenon of the spread of fake news or misinformation in most fields has taken on a wide resonance in societies. Combating this phenomenon and detecting misleading information manually is rather boring, takes a long time, and impractical. It is therefore necessary to rely on the fields of artificial intelligence to solve this problem. As such, this study aims to use deep learning techniques to detect Arabic fake news based on Arabic dataset called the AraNews dataset. This dataset contains news articles covering multiple fields such as politics, economy, culture, sports and others. A Hybrid Deep Neural Network has been proposed to improve accuracy. This network focuses on the properties of both the Text-Convolution Neural
... Show MoreAbstract—The upper limb amputation exerts a significant burden on the amputee, limiting their ability to perform everyday activities, and degrading their quality of life. Amputee patients’ quality of life can be improved if they have natural control over their prosthetic hands. Among the biological signals, most commonly used to predict upper limb motor intentions, surface electromyography (sEMG), and axial acceleration sensor signals are essential components of shoulder-level upper limb prosthetic hand control systems. In this work, a pattern recognition system is proposed to create a plan for categorizing high-level upper limb prostheses in seven various types of shoulder girdle motions. Thus, combining seven feature groups, w
... Show MoreIn current article an easy and selective method is proposed for spectrophotometric estimation of metoclopramide (MCP) in pharmaceutical preparations using cloud point extraction (CPE) procedure. The method involved reaction between MCP with 1-Naphthol in alkali conditions using Triton X-114 to form a stable dark purple dye. The Beer’s law limit in the range 0.34-9 μg mL-1 of MCP with r =0.9959 (n=3) after optimization. The relative standard deviation (RSD) and percentage recoveries were 0.89 %, and (96.99–104.11%) respectively. As well, using surfactant cloud point extraction as a method to extract MCP was reinforced the extinction coefficient(ε) to 1.7333×105L/mol.cm in surfactant-rich phase. The small volume of organi
... Show MoreThe confirming of security and confidentiality of multimedia data is a serious challenge through the growing dependence on digital communication. This paper offers a new image cryptography based on the Chebyshev chaos polynomials map, via employing the randomness characteristic of chaos concept to improve security. The suggested method includes block shuffling, dynamic offset chaos key production, inter-layer XOR, and block 90 degree rotations to disorder the correlations intrinsic in image. The method is aimed for efficiency and scalability, accomplishing complexity order for n-pixels over specific cipher rounds. The experiment outcomes depict great resistant to cryptanalysis attacks, containing statistical, differential and brut
... Show MoreImage databases are increasing exponentially because of rapid developments in social networking and digital technologies. To search these databases, an efficient search technique is required. CBIR is considered one of these techniques. This paper presents a multistage CBIR to address the computational cost issues while reasonably preserving accuracy. In the presented work, the first stage acts as a filter that passes images to the next stage based on SKTP, which is the first time used in the CBIR domain. While in the second stage, LBP and Canny edge detectors are employed for extracting texture and shape features from the query image and images in the newly constructed database. The p
Orthogonal polynomials and their moments serve as pivotal elements across various fields. Discrete Krawtchouk polynomials (DKraPs) are considered a versatile family of orthogonal polynomials and are widely used in different fields such as probability theory, signal processing, digital communications, and image processing. Various recurrence algorithms have been proposed so far to address the challenge of numerical instability for large values of orders and signal sizes. The computation of DKraP coefficients was typically computed using sequential algorithms, which are computationally extensive for large order values and polynomial sizes. To this end, this paper introduces a computationally efficient solution that utilizes the parall
... Show MoreChemical compounds, characteristics, and molecular structures are inevitably connected. Topological indices are numerical values connected with chemical molecular graphs that contribute to understanding a chemical compounds physical qualities, chemical reactivity, and biological activity. In this study, we have obtained some topological properties of the first dominating David derived (DDD) networks and computed several K-Banhatti polynomials of the first type of DDD.