This study presents a practical method for solving fractional order delay variational problems. The fractional derivative is given in the Caputo sense. The suggested approach is based on the Laplace transform and the shifted Legendre polynomials by approximating the candidate function by the shifted Legendre series with unknown coefficients yet to be determined. The proposed method converts the fractional order delay variational problem into a set of (n + 1) algebraic equations, where the solution to the resultant equation provides us the unknown coefficients of the terminated series that have been utilized to approximate the solution to the considered variational problem. Illustrative examples are given to show that the recommended approach is applicable and accurate for solving such kinds of problems.
In this paper, the exact solutions of the Schlömilch’s integral equation and its linear and non-linear generalized formulas with application are solved by using two efficient iterative methods. The Schlömilch’s integral equations have many applications in atmospheric, terrestrial physics and ionospheric problems. They describe the density profile of electrons from the ionospheric for awry occurrence of the quasi-transverse approximations. The paper aims to discuss these issues.
First, the authors apply a regularization meth
In this paper, new approach based on coupled Laplace transformation with decomposition method is proposed to solve type of partial differential equation. Then it’s used to find the accurate solution for heat equation with initial conditions. Four examples introduced to illustrate the accuracy, efficiency of suggested method. The practical results show the importance of suggested method for solve differential equations with high accuracy and easy implemented.
The fractional free volume (Fh) in polystyrene (PS) as a function of neutron -irradiation dose has been measured, using positron annihilation lifetime (PAL) method. The results show that Fh values decreased with increasing n-irradiation dose up to a total dose of 501.03× 10-2 Gy.
A percentage reduction of 2.14 in Fh values is noticed after the initial n-dose corresponding to a percentage reduction in the free volume equal to 42.14/Gy.
The total n-dose induces a percentage reduction of 7.26, corresponding to a percentage reduction of 1.45/Gy. These results indicate that cross -linking is the predominant process induced by n-irradiation.
The results suggest that n-irradiation induces structure changes in PS, causing cross-linking
Based on nonlinear self- diffraction technique, the nonlinear optical properties of thin slice of matter can be obtained. Here, nonlinear characterization of nano-fluids consist of hybrid Single Wall Carbon Nanotubes and Silver Nanoparticles (SWCNTs/Ag-NPs) dispersed in acetone at volume fraction of 6x10-6, 9x10-6, 18x10-6 have been investigated experimentally. Therefore, CW DPSS laser at 473 nm focused into a quartz cuvette contains the previous nano-fluid was utilized. The number of diffraction ring patterns (N) has been counted using Charge - Coupled- Device (CCD) camera and Pc with a certain software, in order to find the maximum change of refractive index ( of fluids. Our result show that the fraction volume of 18x10-6 is more nonli
... Show MoreAccording to the circumstances experienced by our country which led to Occurrence of many crises that are the most important crisis is gaining fuel therefore , the theory of queue ( waiting line ) had been used to solve this crisis and as the relevance of this issue indirect and essential role in daily life .
This research aims to conduct a study of the distribution of gasoline station in (both sides AL – kharkh and AL Rusafa, for the purpose of reducing wasting time and services time through the criteria of the theory of queues and work to improve the efficiency of these stations by the other hand. we are working to reduce the cost of station and increase profits by reducing the active serv
... Show MoreMany consumers of electric power have excesses in their electric power consumptions that exceed the permissible limit by the electrical power distribution stations, and then we proposed a validation approach that works intelligently by applying machine learning (ML) technology to teach electrical consumers how to properly consume without wasting energy expended. The validation approach is one of a large combination of intelligent processes related to energy consumption which is called the efficient energy consumption management (EECM) approaches, and it connected with the internet of things (IoT) technology to be linked to Google Firebase Cloud where a utility center used to check whether the consumption of the efficient energy is s
... Show MoreIn this paper, the methods of weighted residuals: Collocation Method (CM), Least Squares Method (LSM) and Galerkin Method (GM) are used to solve the thin film flow (TFF) equation. The weighted residual methods were implemented to get an approximate solution to the TFF equation. The accuracy of the obtained results is checked by calculating the maximum error remainder functions (MER). Moreover, the outcomes were examined in comparison with the 4th-order Runge-Kutta method (RK4) and good agreements have been achieved. All the evaluations have been successfully implemented by using the computer system Mathematica®10.
In this paper fractional Maxwell fluid equation has been solved. The solution is in the Mettag-Leffler form. For the corresponding solutions for ordinary Maxwell fluid are obtained as limiting case of general solutions. Finally, the effects of different parameters on the velocity and shear stress profile are analyzed through plotting the velocity and shear stress profile.
. In recent years, Bitcoin has become the most widely used blockchain platform in business and finance. The goal of this work is to find a viable prediction model that incorporates and perhaps improves on a combination of available models. Among the techniques utilized in this paper are exponential smoothing, ARIMA, artificial neural networks (ANNs) models, and prediction combination models. The study's most obvious discovery is that artificial intelligence models improve the results of compound prediction models. The second key discovery was that a strong combination forecasting model that responds to the multiple fluctuations that occur in the bitcoin time series and Error improvement should be used. Based on the results, the prediction a
... Show More