This study presents a practical method for solving fractional order delay variational problems. The fractional derivative is given in the Caputo sense. The suggested approach is based on the Laplace transform and the shifted Legendre polynomials by approximating the candidate function by the shifted Legendre series with unknown coefficients yet to be determined. The proposed method converts the fractional order delay variational problem into a set of (n + 1) algebraic equations, where the solution to the resultant equation provides us the unknown coefficients of the terminated series that have been utilized to approximate the solution to the considered variational problem. Illustrative examples are given to show that the recommended approach is applicable and accurate for solving such kinds of problems.
This study explores the challenges in Artificial Intelligence (AI) systems in generating image captions, a task that requires effective integration of computer vision and natural language processing techniques. A comparative analysis between traditional approaches such as retrieval- based methods and linguistic templates) and modern approaches based on deep learning such as encoder-decoder models, attention mechanisms, and transformers). Theoretical results show that modern models perform better for the accuracy and the ability to generate more complex descriptions, while traditional methods outperform speed and simplicity. The paper proposes a hybrid framework that combines the advantages of both approaches, where conventional methods prod
... Show MoreGingival crevicular fluid (GCF) may reflect the events associated with orthodontic tooth movement. Attempts have been conducted to identify biomarkers reflecting optimum orthodontic force, unwanted sequallea (i.e. root resorption) and accelerated tooth movement. The aim of the present study is to find out a standardized GCF collection, storage and total protein extraction method from apparently healthy gingival sites with orthodontics that is compatible with further high-throughput proteomics. Eighteen patients who required extractions of both maxillary first premolars were recruited in this study. These teeth were randomly assigned to either heavy (225g) or light force (25g), and their site specific GCF was collected at baseline and aft
... Show MoreIn the latest years there has been a profound evolution in computer science and technology, which incorporated several fields. Under this evolution, Content Base Image Retrieval (CBIR) is among the image processing field. There are several image retrieval methods that can easily extract feature as a result of the image retrieval methods’ progresses. To the researchers, finding resourceful image retrieval devices has therefore become an extensive area of concern. Image retrieval technique refers to a system used to search and retrieve images from digital images’ huge database. In this paper, the author focuses on recommendation of a fresh method for retrieving image. For multi presentation of image in Convolutional Neural Network (CNN),
... Show MoreThis study aims to show the effectiveness of immobilization of Chlorella green algae biomass in the form of bead for the removal of lead ions from synthetic polluted water at various operational parameters such as pH (2–6), biosorbent dosage (0.5–20 g/L) and initial concentration (10–100 mg/L). More than 90 % removal efficiency was achieved. FTIR and SEM-EDX analysis of the biosorbent before and after sorption show differences in the functional groups on the adsorbent surface. Langmuir and Freundlich equilibrium isotherm, pseudo-first-order and pseudo-second-order kinetic models were applied to the experimental and results and show good conformity with Langmuir isotherm model and pseudo-second-order kinetic model with c
... Show MoreThe issue of image captioning, which comprises automatic text generation to understand an image’s visual information, has become feasible with the developments in object recognition and image classification. Deep learning has received much interest from the scientific community and can be very useful in real-world applications. The proposed image captioning approach involves the use of Convolution Neural Network (CNN) pre-trained models combined with Long Short Term Memory (LSTM) to generate image captions. The process includes two stages. The first stage entails training the CNN-LSTM models using baseline hyper-parameters and the second stage encompasses training CNN-LSTM models by optimizing and adjusting the hyper-parameters of
... Show MoreTo ascertain the stability or instability of time series, three versions of the model proposed by Dickie-Voller were used in this paper. The aim of this study is to explain the extent of the impact of some economic variables such as the supply of money, gross domestic product, national income, after reaching the stability of these variables. The results show that the variable money supply, the GDP variable, and the exchange rate variable were all stable at the level of the first difference in the time series. This means that the series is an integrated first-class series. Hence, the gross fixed capital formation variable, the variable national income, and the variable interest rate
... Show More