Community detection is an important and interesting topic for better understanding and analyzing complex network structures. Detecting hidden partitions in complex networks is proven to be an NP-hard problem that may not be accurately resolved using traditional methods. So it is solved using evolutionary computation methods and modeled in the literature as an optimization problem. In recent years, many researchers have directed their research efforts toward addressing the problem of community structure detection by developing different algorithms and making use of single-objective optimization methods. In this study, we have continued that research line by improving the Particle Swarm Optimization (PSO) algorithm using a local improvement operator to effectively discover community structure in the modular complex networks when employing the modularity density metric as a single-objective function. The framework of the proposed algorithm consists of three main steps: an initialization strategy, a movement strategy based on perturbation genetic operators, and an improvement operator. The key idea behind the improvement operator is to determine and reassign the complex network nodes that are located in the wrong communities if the majority of their topological links do not belong to their current communities, making it appear that these nodes belong to another community. The performance of the proposed algorithm has been tested and evaluated when applied to publicly-available modular complex networks generated using a flexible and simple benchmark generator. The experimental results showed the effectiveness of the suggested method in discovering community structure over modular networks of different complexities and sizes.
Nowadays, internet security is a critical concern; the One of the most difficult study issues in network security is "intrusion detection". Fight against external threats. Intrusion detection is a novel method of securing computers and data networks that are already in use. To boost the efficacy of intrusion detection systems, machine learning and deep learning are widely deployed. While work on intrusion detection systems is already underway, based on data mining and machine learning is effective, it requires to detect intrusions by training static batch classifiers regardless considering the time-varying features of a regular data stream. Real-world problems, on the other hand, rarely fit into models that have such constraints. Furthermor
... Show MoreBCl3 is toxic gas and its detection is of great importance. Thus, here, B3LYP, M06-2X, and B97D density functionals are utilized for probing the effect of decorating Zn, Cd, and Au on the sensing performance of an AlP nano-sheet (AlPNS) in detecting the BCl3. We predict that the interaction of pure AlPNS with BCl3 is physisorption, and the sensing response (SR) of AlPNS is approximately 9.2. The adsorption energy of BCl3 changes from −4.1 to −18.8, −19.1, and −19.5 kcal/mol by decorating the Zn, Cd, and Au metals into the AlPNS surface, respectively. Also, the corresponding SR meaningfully rises to 40.4, 59.0, and 80.9, indicating that by increasing the atomic number of metals, the sensitivity of metal decorated AlPNS (metal@AlPNS)
... Show MoreThis research after financial ratios in the detection of fraud to the financial statements published which enables specialists from the work of their studies and their conclusions to obtain the information they seek on the activities of the entity. Has provided researchers what these relics They then field study to test the validity and sincerity of the findings of the suggestions that have been upheld the need to study all financial ratios extracted in general, organized and used in decision-making processes necessary administrative.And that the financial management attention more financial analysis and extraction of financial ratios and compare them with industry standards taken from historical norms
This paper is focused on orthogonal function approximation technique FAT-based adaptive backstepping control of a geared DC motor coupled with a rotational mechanical component. It is assumed that all parameters of the actuator are unknown including the torque-current constant (i.e., unknown input coefficient) and hence a control system with three motor control modes is proposed: 1) motor torque control mode, 2) motor current control mode, and 3) motor voltage control mode. The proposed control algorithm is a powerful tool to control a dynamic system with an unknown input coefficient. Each uncertain parameter/term is represented by a linear combination of weighting and orthogonal basis function vectors. Chebyshev polynomial is used
... Show MoreThe work reported in this study focusing on the abrasive wear behavior for three types of pipes used in oil industries (Carbone steel, Alloy steel and Stainless steel) using a wear apparatus for dry and wet tests, manufactured according to ASTM G65. Silica sand with
hardness (1000-1100) HV was used as abrasive material. The abrasive wear of these pipes has been measured experimentally by measuring the wear rate for each case under different sliding speeds, applied loads, and sand conditions (dry or wet). All tests have been conducted using sand of particle size (200-425) µm, ambient temperature of 34.5 °C and humidity 22% (Lab conditions).
The results show that the material loss due to abrasive wear increased monotonically with
KE Sharquie, MM Al-Waiz, AA Al-Nuaimy, Saudi medical journal, 2005 - Cited by 8
Introduction and Aim: The pro-inflammatory cytokine IL-39, a member of the IL-12 family plays a key role in the inflammatory response by modulating immune cell activity and inflammation. A literature search shows no study undertaken for the effect of IL-39's on arthritis so far. Hence, the purpose of this study was to investigate the role of IL-39 in rheumatoid arthritis. Materials and Methods: This study involved 80 patients with rheumatoid arthritis registered at the Rheumatology Clinic at Baghdad teaching hospital. The patients were divided into three groups based on treatments received. Group 1 included patients who were not on any treatment for arthritis, Group 2 with patients on hydroxychloroquine and or prednisone treatment,
... Show MoreThe aim of the present study is to formulate floating effervescent microsponge tablet of the narrow absorption window drug, Baclofen (BFN) for controlling drug release and thereby decrease the side effect of the drug. The microsponges of BFN were prepared by non-aqueous emulsion solvent diffusion method (oil in oil emulsion method). The effects of drug: polymer ratio, stirring time and type of Eudragit polymer on the physical characteristics of microsponges were investigated and characterized for production yield, loading efficiency, particle size, surface morphology, and in vitro drug release from microsponges. The selected microsponge formula was incorporated into the floating effervescent gastro-retentive tablet. The prepared fl
... Show More