THE ACTUAL SOCIETY MODEL
Our society model has been showing signs of exhaustion since the end of the XX century. The recent appearance of the Covid-19 virus is another consequence of humanity's distance from Nature and the environment it inhabits. Also, climate change, environmental deterioration, loss of biodiversity, overexploitation of natural resources, and social inequality are some of the consequences derived from this separation between society and Nature. We must change our operating habits. Inevitably from a society based on the market, hyper consumption, fossil energy and individual enrichment at all costs, we will have to change to another
... Show MoreIn this paper Alx Ga1-x As:H films have been prepared by using new deposition method based on combination of flash- thermal evaporation technique. The thickness of our samples was about 300nm. The Al concentration was altered within the 0 x 40.
The results of X- ray diffraction analysis (XRD) confirmed the amorphous structure of all AlXGa1-x As:H films with x 40 and annealing temperature (Ta)<200°C. the temperature dependence of the DC conductivity GDC with various Al content has been measured for AlXGa1-x As:H films.
We have found that the thermal activation energy Ea depends of Al content and Ta, thus the value of Ea were approximately equal to half the value of optical gap.
This paper considers a new Double Integral transform called Double Sumudu-Elzaki transform DSET. The combining of the DSET with a semi-analytical method, namely the variational iteration method DSETVIM, to arrive numerical solution of nonlinear PDEs of Fractional Order derivatives. The proposed dual method property decreases the number of calculations required, so combining these two methods leads to calculating the solution's speed. The suggested technique is tested on four problems. The results demonstrated that solving these types of equations using the DSETVIM was more advantageous and efficient
In this work, we introduce a new kind of perfect mappings, namely j-perfect mappings and j-ω-perfect mappings. Furthermore we devoted to study the relationship between j-perfect mappings and j-ω-perfect mappings. Finally, certain theorems and characterization concerning these concepts are studied; j = , δ, α, pre, b, β
This article contains a new generalizations of Ϻ-hyponormal operators which is namely (Ϻ,θ)-hyponormal operator define on Hilbert space H. Furthermore, we investigate some properties of this concept such as the product and sum of two (Ϻ, θ)-hyponormal operators, At the end the operator equation where , has been used for getting several characterization of (Ϻ,θ)-hyponormal operators.
Czerwi’nski et al. introduced Lucky labeling in 2009 and Akbari et al and A.Nellai Murugan et al studied it further. Czerwi’nski defined Lucky Number of graph as follows: A labeling of vertices of a graph G is called a Lucky labeling if for every pair of adjacent vertices u and v in G where . A graph G may admit any number of lucky labelings. The least integer k for which a graph G has a lucky labeling from the set 1, 2, k is the lucky number of G denoted by η(G). This paper aims to determine the lucky number of Complete graph Kn, Complete bipartite graph Km,n and Complete tripartite graph Kl,m,n. It has also been studied how the lucky number changes whi
... Show MoreThis paper is mainly concerned with the study of the moral aspects that prompts William Shakespeare to attempt a romance in which he has embedded the epitome of his thought, experience, and philosophy concerning certain significant aspects of human life whose absence or negligence may threaten human existence, peace, and stability. From the beginning of history man realizes the importance of prosperity on the many and various levels that touch and address his needs and desires—natural, material, and spiritual. The Tempest, due to the dramatist's awareness of the aforementioned values, reflects the dramatist's duty as to projecting and unfolding these important aspects, reconciliation and forgiveness, that promote prosperity which is th
... Show MoreThe aim of the present work is to synthesis of new 9-ethyl carbazole derivatives .The 3-acetyl-9-ethyl carbazole was achieved by the reaction of compound (1) with acetyl chloride in the presence of aluminum chloride to give compound (2). Reaction of compound (2) with a ppropriate aromatic aldehyde yielded 3-(3-Phenyl -1-Oxy propen-1-yl)9-Ethyl carbazole(3a-3h).The reaction of (3) with hydrazine hydrate gave 3-(5-aryl-4, 5-Dihydro-3-pyrozolyl)9-Ethyl carbazole(4a-4h). Also compound (3) reacted with phenyl hydrazine gave 3-(1-phenyl-5-aryl-4-pyrozoline-3-yl)9-Ethyl carbazole (5a-5h). The reaction of compound (3) with guanidine carbonate in presence of NaOH (40%) gave the 3-(2-amino-6-aryl-4-pyrimidinyl)9-Ethyl carbazole (6a-6h). The prepar
... Show MoreIn this work, we introduce a new convergence formula. We also define cluster point , δ-Cauchy sequence, δ-convergent, δ-completeness , and define sequentially contraction in approach space. In addition, we prove the contraction condition is necessary and sufficient to get the function is sequentially contraction as well as we put a new structure for the norm in the approach space which is called approach –Banach space, we discuss the normed approach space with uniform condition is a Hausdorff space. Also, we prove a normed approach space is complete if and only if the metric generated from approach space is complete as well as prove every finite –dimensional approach normed space is δ-complete. We prove several r
... Show MoreMany of the elementary transformations of determinants which are used in their evaluation and in the solution of linear equations may by expressed in the notation of matrices. In this paper, some new interesting formulas of special matrices are introduced and proved that the determinants of these special matrices have the values zero. All formulation has been coded in MATLAB 7.