Deep learning techniques are applied in many different industries for a variety of purposes. Deep learning-based item detection from aerial or terrestrial photographs has become a significant research area in recent years. The goal of object detection in computer vision is to anticipate the presence of one or more objects, along with their classes and bounding boxes. The YOLO (You Only Look Once) modern object detector can detect things in real-time with accuracy and speed. A neural network from the YOLO family of computer vision models makes one-time predictions about the locations of bounding rectangles and classification probabilities for an image. In layman's terms, it is a technique for instantly identifying and recognizing items in images. This article, will be focusing on comparing the main differences among the YOLO version's Architecture, and will discuss its evolution from YOLO to YOLOv8, its network architecture, new features, and applications. And starts by looking at the basic ideas and design of the first YOLO model, which laid the groundwork for the following improvements in the YOLO family. In additionally, this article will provide a step-by-step guide on how to use the YOLO version architecture, Understanding the primary drivers, feature development, constraints, and even relationships for the versions is crucial as the YOLO versions advance. Researchers interested in object detection, especially beginning researchers, would find this paper useful and enlightening.
The aim of this work is to evaluate concentrations of natural and artificial radionuclide in nine different samples of condiments from local markets. The concentrations of 238 U , 232 Th ,40k and 137Cs were measured by using gamma spectroscopy with a high- purity germanium detector. The concentrations of 238 U, 232 Th ,40k and 137Cs were found to be in a range of (21.4 - 91.13), (15.7 - 88.11) , (285.56 – 1100) and (5.1 - 27.5) Bq.kg-1 respectively. These concentrations are not hazardous to public health and the activities are within the allowed levels
Abstract Background: The daily usage of maxillofacial prostheses causes them to mechanically deteriorate with time. This study was aimed to evaluate the reinforcement of VST50F maxillofacial silicone by using yttrium oxide (Y2O3) nanoparticles (NPs) to resist aging and mechanical deterioration. Materials and Method: Y2O3 NPs (30–45nm) were loaded into VST50F maxillofacial silicone in two weight percentages (1 and 1.5 wt%), which were predetermined in a pilot study as the best rates for improving tear strength with minimum increase in hardness values. A total of 120 specimens were prepared and divided into the control and experimental groups (with 1 and 1.5 wt% Y2O3 addition). Each group included 40 specimens, 10 specimens for each paramet
... Show MoreScientific development has occupied a prominent place in the field of diagnosis, far from traditional procedures. Scientific progress and the development of cities have imposed diseases that have spread due to this development, perhaps the most prominent of which is diabetes for accurate diagnosis without examining blood samples and using image analysis by comparing two images of the affected person for no less than a period. Less than ten years ago they used artificial intelligence programs to analyze and prove the validity of this study by collecting samples of infected people and healthy people using one of the Python program libraries, which is (Open-CV) specialized in measuring changes to the human face, through which we can infer the
... Show MoreObjective Advantageous properties of silicone elastomer made it one of the favorable materials in maxillofacial prosthesis construction, but these properties may change after months of usage or after pigments addition. This study aimed to define the optimum concentration for a mixture of two types of intrinsic pigments that added to VST-50 maxillofacial silicone material and study their effects on mechanical properties before and after artificial aging. Methods After the pilot study was conducted, 0.1% by weight of rayon flocking and 0. 2% by weight of burnt sienna intrinsic pigment concentration was selected because of improvement in tested mechanical properties of VST-50 maxillofacial silicone. A total of one hundred and eighty samples we
... Show MoreTarget tracking is a significant application of wireless sensor networks (WSNs) in which deployment of self-organizing and energy efficient algorithms is required. The tracking accuracy increases as more sensor nodes are activated around the target but more energy is consumed. Thus, in this study, we focus on limiting the number of sensors by forming an ad-hoc network that operates autonomously. This will reduce the energy consumption and prolong the sensor network lifetime. In this paper, we propose a fully distributed algorithm, an Endocrine inspired Sensor Activation Mechanism for multi target-tracking (ESAM) which reflecting the properties of real life sensor activation system based on the information circulating principle in the endocr
... Show More<span>As a result of numerous applications and low installation costs, wireless sensor networks (WSNs) have expanded excessively. The main concern in the WSN environment is to lower energy consumption amidst nodes while preserving an acceptable level of service quality. Using multi-mobile sinks to reduce the nodes' energy consumption have been considered as an efficient strategy. In such networks, the dynamic network topology created by the sinks mobility makes it a challenging task to deliver the data to the sinks. Thus, in order to provide efficient data dissemination, the sensor nodes will have to readjust the routes to the current position of the mobile sinks. The route re-adjustment process could result in a significant m
... Show MoreThis paper proposes a new structure of the hybrid neural controller based on the identification model for nonlinear systems. The goal of this work is to employ the structure of the Modified Elman Neural Network (MENN) model into the NARMA-L2 structure instead of Multi-Layer Perceptron (MLP) model in order to construct a new hybrid neural structure that can be used as an identifier model and a nonlinear controller for the SISO linear or nonlinear systems. Weight parameters of the hybrid neural structure with its serial-parallel configuration are adapted by using the Back propagation learning algorithm. The ability of the proposed hybrid neural structure for nonlinear system has achieved a fast learning with minimum number
... Show MoreThe research aimed at designing teaching program using jigsaw in learning spiking in volleyball as well as identifying the effect of these exercises on learning spring in volleyball. The researchers used the experimental method on (25) students as experimental group and (27) students as controlling group and (15) students as pilot study group. The researchers conducted spiking tests then the data was collected and treated using proper statistical operations to conclude that the strategy have a positive effect in experimental group. Finally, the researchers recommended using the strategy in making similar studies on other subjects and skills.
The investigation of signature validation is crucial to the field of personal authenticity. The biometrics-based system has been developed to support some information security features.Aperson’s signature, an essential biometric trait of a human being, can be used to verify their identification. In this study, a mechanism for automatically verifying signatures has been suggested. The offline properties of handwritten signatures are highlighted in this study which aims to verify the authenticity of handwritten signatures whether they are real or forged using computer-based machine learning techniques. The main goal of developing such systems is to verify people through the validity of their signatures. In this research, images of a group o
... Show MoreThe objective of this work is to design and implement a cryptography system that enables the sender to send message through any channel (even if this channel is insecure) and the receiver to decrypt the received message without allowing any intruder to break the system and extracting the secret information. This work modernize the feedforward neural network, so the secret message will be encrypted by unsupervised neural network method to get the cipher text that can be decrypted using the same network to get the original text. The security of any cipher system depends on the security of the related keys (that are used by the encryption and the decryption processes) and their corresponding lengths. In this work, the key is the final weights
... Show More