An encryption system needs unpredictability and randomness property to maintain information security during transmission and storage. Although chaotic maps have this property, they have limitations such as low Lyapunov exponents, low sensitivity and limited chaotic regions. The paper presents a new improved skewed tent map to address these problems. The improved skew tent map (ISTM) increases the sensitivity to initial conditions and control parameters. It has uniform distribution of output sequences. The programs for ISTM chaotic behavior were implemented in MATLAB R2023b. The novel ISTM produces a binary sequence, with high degree of complexity and good randomness properties. The performance of the ISTM generator shows effective statistical tests and correlation values near to zero, meaning no repeatability, and more random-like behavior. A comparison of ISTM and other chaotic maps was presented which shows the proposed map has greater Shannon entropy, wider chaotic area, higher Lyapunov exponents and it is appropriate for encryption algorithms and hash functions based on chaos.
In this study, a traumatic spinal cord injury (TSCI) classification system is proposed using a convolutional neural network (CNN) technique with automatically learned features from electromyography (EMG) signals for a non-human primate (NHP) model. A comparison between the proposed classification system and a classical classification method (k-nearest neighbors, kNN) is also presented. Developing such an NHP model with a suitable assessment tool (i.e., classifier) is a crucial step in detecting the effect of TSCI using EMG, which is expected to be essential in the evaluation of the efficacy of new TSCI treatments. Intramuscular EMG data were collected from an agonist/antagonist tail muscle pair for the pre- and post-spinal cord lesi
... Show MoreRe-use of the byproduct wastes resulting from different municipal and industrial activities in the reclamation of contaminated water is real application for green projects and sustainability concepts. In this direction, the synthesis of composite sorbent from the mixing of waterworks and sewage sludge coated with new nanoparticles named “siderite” (WSSS) is the novelty of this study. These particles can be precipitated from the iron(II) nitrate using waterworks sludge as alkaline agent and source of carbonate. Characterization tests using X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS) mapping revealed that the coating process was c
In recent days, the escalating need to seamlessly transfer data traffic without discontinuities across the Internet network has exerted immense pressure on the capacity of these networks. Consequently, this surge in demand has resulted in the disruption of traffic flow continuity. Despite the emergence of intelligent networking technologies such as software-defined networking, network cloudification, and network function virtualization, they still need to improve their performance. Our proposal provides a novel solution to tackle traffic flow continuity by controlling the selected packet header bits (Differentiated Services Code Point (DSCP)) that govern the traffic flow priority. By setting the DSCP bits, we can determine the appropriate p
... Show MoreThe discourse surrounding lingual sovereignty within the African postcolonial context is profoundly intertwined with the fabric of cultural identity and self-determination. Language serves not merely as a conduit for communication but as a repository for a people's collective consciousness, encapsulating their traditions, thoughts, and perspectives. In the realm of postcolonial literature, this dialogue often grapples with the paradox of expressing indigenous narratives through the linguistic tools of former colonizers. Chinua Achebe's seminal work, "Things Fall Apart," exemplifies this conundrum, artfully weaving the orature and culture of Umuofia within the English language. Achebe's choice to write in English—a language imposed upon hi
... Show MoreEarth’s climate changes rapidly due to the increases in human demands and rapid economic growth. These changes will affect the entire biosphere, mostly in negative ways. Predicting future changes will put us in a better position to minimize their catastrophic effects and to understand how humans can cope with the new changes beforehand. In this research, previous global climate data set observations from 1961-1990 have been used to predict the future climate change scenario for 2010-2039. The data were processed with Idrisi Andes software and the final Köppen-Geiger map was created with ArcGIS software. Based on Köppen climate classification, it was found that areas of Equator, Arid Steppes, and Snow will decrease by 3.9 %, 2.96%, an
... Show MoreMost recognition system of human facial emotions are assessed solely on accuracy, even if other performance criteria are also thought to be important in the evaluation process such as sensitivity, precision, F-measure, and G-mean. Moreover, the most common problem that must be resolved in face emotion recognition systems is the feature extraction methods, which is comparable to traditional manual feature extraction methods. This traditional method is not able to extract features efficiently. In other words, there are redundant amount of features which are considered not significant, which affect the classification performance. In this work, a new system to recognize human facial emotions from images is proposed. The HOG (Histograms of Or
... Show MoreMedicine is one of the fields where the advancement of computer science is making significant progress. Some diseases require an immediate diagnosis in order to improve patient outcomes. The usage of computers in medicine improves precision and accelerates data processing and diagnosis. In order to categorize biological images, hybrid machine learning, a combination of various deep learning approaches, was utilized, and a meta-heuristic algorithm was provided in this research. In addition, two different medical datasets were introduced, one covering the magnetic resonance imaging (MRI) of brain tumors and the other dealing with chest X-rays (CXRs) of COVID-19. These datasets were introduced to the combination network that contained deep lea
... Show More