A single-crystalline semi-polar gallium nitride (11-22) was grown on m-plane (10-10) sapphire substrate by metal organic chemical vapor deposition. Three-step approach was introduced to investigate the grain size evolution for semi-polar (11-22) GaN. Such approach was achieved due to the optimized gallium to ammonia ratio and temperature variations, which led to high quality (11-22) oriented gallium nitride epilayers. The full width at half maximum values along (-1-123) and (1-100) planes for the overgrowth temperature of 1080°C were found to be as low as 0.37° and 0.49°, respectively. This was an indication of the enhanced coalescence and reduction in root mean square roughness as seen by atomic force microscopy. Surface analysis via atomic force microscopy indicated the orientation towards semi-polar plane. Field emission scanning electron microscopy analysis further indicates that higher temperature of 1080°C during the deposition of the overgrowth promoted closely packed surface coalescence. Room temperature Raman revealed that the overgrowth temperature of 1080°C portrayed compressive strain free as compared to other overgrowth temperature. Based on these results, the promising overgrowth temperature of 1080°C can be further utilized in future work for optoelectronics devices.
Background: Breast Cancer is the most common malignancy among the Iraqi population; the majority of cases are still diagnosed at advanced stages with poor prospects of cure. Early detection through promoting public awareness is one of the promising tools in its control. Objectives: To evaluate the baseline needs for breast cancer awareness in Iraq through exploring level of knowledge, beliefs and behavior towards the disease and highlighting barriers to screening among a sample of Iraqi women complaining of breast cancer. Methodology: Two-hundred samples were enrolled in this study; gathered from the National
Biomass is a popular renewable carbon source because it has a lot of potential as a substitute for scarce fossil fuels and has been used to make essential compounds like 5-hydroxymethylfurfural (HMF). One of the main components of biomass, glucose, has been extensively studied as a precursor for the production of HMF. Several efforts have been made to find efficient and repeatable procedures for the synthesis of HMF, a chemical platform used in the manufacturing of fuels and other high-value compounds. Sulfonated graphite (SG) was produced from spent dry batteries and utilized as a catalyst to convert glucose to 5-hydroxymethylfurfural (HMF). Temperature, reaction time, and catalyst loading were the variables studied. When dimethyl sulfo
... Show MoreKE Sharquie, AA Noaimi, AG Al-Ghazzi, Journal of Dermatology & Dermatologic Surgery, 2015 - Cited by 19
For more than a decade, externally bonded carbon fiber reinforced polymer (CFRP) composites successfully utilized in retrofitting reinforced concrete structural elements. The function of CFRP reinforcement in increasing the ductility of reinforced concrete (RC) beam is essential in such members. Flexural and shear behaviors, ductility, and confinement were the main studied properties that used the CFRP as a strengthening material. However, limited attention has been paid to investigate the energy absorption of torsion strengthening of concrete members, especially two-span concrete beams. Hence, the target of this work is to investigate the effectiveness of CFRP-strengthening technique with regard to energy absorption of two-span RC
... Show MoreWastewater treatment plants operators prefer to make adjustments because they are more cost effective, to use the existing tank instead of building new ones. In this case an imported materials would be used as bio-loads to increase biomass and thus maintain efficiency as the next organic loading increases.In the present study, a local substance "pumice stone" was used as a biological carrier in the aeration tank, and the experiments were carried out in five stages: without biological carriers, filling ratio of 4%,10%,20%, and25% with pumice stone, the maximum organic loading at each stage (1.1884, 1.2144, 1.9432, 2.7768, 3.3141)g BOD /l.d respectively.Other experiments were carried out to determine the best filling ratio, the SS remova
... Show MoreUtilizing phase change materials in thermal energy storage systems is commonly considered as an alternative solution for the effective use of energy. This study presents numerical simulations of the charging process for a multitube latent heat thermal energy storage system. A thermal energy storage model, consisting of five tubes of heat transfer fluids, was investigated using Rubitherm phase change material (RT35) as the. The locations of the tubes were optimized by applying the Taguchi method. The thermal behavior of the unit was evaluated by considering the liquid fraction graphs, streamlines, and isotherm contours. The numerical model was first verified compared with existed experimental data from the literature. The outcomes re
... Show MoreThe dynamic behavior of laced reinforced concrete (LRC) T‐beams could give high‐energy absorption capabilities without significantly affecting the cost, which was offered through a combination of high strength and ductile response. In this paper, LRC T‐beams, composed of inclined continuous reinforcement on each side of the beam, were investigated to maintain high deformations as predicted in blast resistance. The beams were tested under four‐point loading to create pure bending zones and obtain the ultimate flexural capacities. Transverse reinforcement using lacing reinforcement and conventional vertical stirrups were compared in terms of deformation, strain, and toughness changes of the tes
In this work, the Whittaker wave functions were used to study the nuclear density distributions and elastic electron scattering charge form factors for proton-rich nuclei and their corresponding stable nuclei (10,8B, 13,9C, 14,12N and 19,17F). The parameters of Whittaker’s basis were fixed to generate the experimental values of available size radii. The Whittaker basis was connected to harmonic-oscillator basis through boundary condition at match point. The nuclear shell model was opted with pure configuration for all studied nuclei to compute aforementioned studied quantities except 10