This research describes a new model inspired by Mobilenetv2 that was trained on a very diverse dataset. The goal is to enable fire detection in open areas to replace physical sensor-based fire detectors and reduce false alarms of fires, to achieve the lowest losses in open areas via deep learning. A diverse fire dataset was created that combines images and videos from several sources. In addition, another self-made data set was taken from the farms of the holy shrine of Al-Hussainiya in the city of Karbala. After that, the model was trained with the collected dataset. The test accuracy of the fire dataset that was trained with the new model reached 98.87%.
Soil that has been contaminated by heavy metals is a serious environmental problem. A different approach for forecasting a variety of soil physical parameters is reflected spectroscopy is a low-cost, quick, and repeatable analytical method. The objectives of this paper are to predict heavy metal (Ti, Cr, Sr, Fe, Zn, Cu and Pb) soil contamination in central and southern Iraq using spectroscopy data. An XRF was used to quantify the levels of heavy metals in a total of 53 soil samples from Baghdad and ThiQar, and a spectrogram was used to examine how well spectral data might predict the presence of heavy metals metals. The partial least squares regression PLSR models performed well in pr
Estimation of elements: Pb, Zn, Mn, Cd, and Cu, which were conducted seasonally from October-2021 till March-2022 in residential areas of Baghdad City using Geoaccumulation index (Igeo), enrichment factor ratios (EF), the factor of contamination (CF), contamination degree (Cd), index of pollution load (PLI) and index of potential ecological risk (Eif). The overall contamination factor in the research area is limited from low contamination with Cu, Mn, and Zn, moderately contaminated to very high contamination with Pb and Cd, while the assessment according to the I-geo index shows categories that vary from a slightly polluted to unpolluted by those examined heavy metals. The pollution load index indicates that the soils in some resi
... Show MoreBackground: In young adults, multiple sclerosis is a prevalent chronic inflammatory demyelinating condition. It is characterized by white matter affection, but many individuals also have significant gray matter involvement. A double-inversion recovery pulse (DIR) pattern was recently proposed to improve the visibility of multiple sclerosis lesions. Objective: To find out how well a DIR sequence, FLAIR, and T2-weighted pulse sequences can find MS lesions in the supratentorial and infratentorial regions. Methods: A total of 37 patients with established diagnoses of multiple sclerosis were included in this cross-sectional study. Brain MRI was done using double inversion recovery, T2, and FLAIR sequences. The number of lesions was count
... Show MoreThe aesthetic expression and its orders are important for steel structures forming. Steel structures are a compilation of structural elements, where its shapes have standard dimensions and pre-fabricated. As the steel construction systems not only aim to achieve the functional requirements for users, but must also have the symbolic aesthetics which provides visually and cognitive expression for viewers. In this sense the research interested in expressional aesthetics in these systems and highlights the importance of attention as structural items. Therefore the visual items which related with steel structures contain some of the most powerful forms of modern architecture, steel structures with a glass cladding, agility an
... Show MoreVascular patterns were seen to be a probable identification characteristic of the biometric system. Since then, many studies have investigated and proposed different techniques which exploited this feature and used it for the identification and verification purposes. The conventional biometric features like the iris, fingerprints and face recognition have been thoroughly investigated, however, during the past few years, finger vein patterns have been recognized as a reliable biometric feature. This study discusses the application of the vein biometric system. Though the vein pattern can be a very appealing topic of research, there are many challenges in this field and some improvements need to be carried out. Here, the researchers reviewed
... Show MoreIn this research, carbon nanotubes (CNTs) is prepared through the Hummers method with a slight change in some of the work steps, thus, a new method has been created for preparing carbon nanotubes which is similar to the original Hummers method that is used to prepare graphene oxide. Then, the suspension carbon nanotubes is transferred to a simple electrode position platform consisting of two electrodes and the cell body for the coating and reduction of the carbon nanotubes on ITO glass which represents the cathode electrode while platinum represents the anode electrode. The deposited layer of carbon nanotubes is examined through the scanning electron microscope technique (SEM), and the images throughout the research show the
... Show MoreIn this research the results of applying Artificial Neural Networks with modified activation function to
perform the online and offline identification of four Degrees of Freedom (4-DOF) Selective Compliance
Assembly Robot Arm (SCARA) manipulator robot will be described. The proposed model of
identification strategy consists of a feed-forward neural network with a modified activation function that
operates in parallel with the SCARA robot model. Feed-Forward Neural Networks (FFNN) which have
been trained online and offline have been used, without requiring any previous knowledge about the
system to be identified. The activation function that is used in the hidden layer in FFNN is a modified
version of the wavelet func
In this research the results of applying Artificial Neural Networks with modified activation function to perform the online and offline identification of four Degrees of Freedom (4-DOF) Selective Compliance Assembly Robot Arm (SCARA) manipulator robot will be described. The proposed model of identification strategy consists of a feed-forward neural network with a modified activation function that operates in parallel with the SCARA robot model. Feed-Forward Neural Networks (FFNN) which have been trained online and offline have been used, without requiring any previous knowledge about the system to be identified. The activation function that is used in the hidden layer in FFNN is a modified version of the wavelet function. This approach ha
... Show More