Preferred Language
Articles
/
9BcjUo8BVTCNdQwCv2t_
Two Proposed Models for Face Recognition: Achieving High Accuracy and Speed with Artificial Intelligence
...Show More Authors

In light of the development in computer science and modern technologies, the impersonation crime rate has increased. Consequently, face recognition technology and biometric systems have been employed for security purposes in a variety of applications including human-computer interaction, surveillance systems, etc. Building an advanced sophisticated model to tackle impersonation-related crimes is essential. This study proposes classification Machine Learning (ML) and Deep Learning (DL) models, utilizing Viola-Jones, Linear Discriminant Analysis (LDA), Mutual Information (MI), and Analysis of Variance (ANOVA) techniques. The two proposed facial classification systems are J48 with LDA feature extraction method as input, and a one-dimensional Convolutional Neural Network Hybrid Model (1D-CNNHM). The MUCT database was considered for training and evaluation. The performance, in terms of classification, of the J48 model reached 96.01% accuracy whereas the DL model that merged LDA with MI and ANOVA reached 100% accuracy. Comparing the proposed models with other works reflects that they are performing very well, with high accuracy and low processing time.

Scopus Clarivate Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Tue Apr 02 2024
Journal Name
Advances In Systems Science And Applications
A New Face Swap Detection Technique for Digital Images
...Show More Authors

View Publication
Scopus
Publication Date
Wed Oct 09 2024
Journal Name
Engineering, Technology & Applied Science Research
Improving Pre-trained CNN-LSTM Models for Image Captioning with Hyper-Parameter Optimization
...Show More Authors

The issue of image captioning, which comprises automatic text generation to understand an image’s visual information, has become feasible with the developments in object recognition and image classification. Deep learning has received much interest from the scientific community and can be very useful in real-world applications. The proposed image captioning approach involves the use of Convolution Neural Network (CNN) pre-trained models combined with Long Short Term Memory (LSTM) to generate image captions. The process includes two stages. The first stage entails training the CNN-LSTM models using baseline hyper-parameters and the second stage encompasses training CNN-LSTM models by optimizing and adjusting the hyper-parameters of

... Show More
View Publication
Scopus (1)
Scopus Crossref
Publication Date
Thu Sep 30 2021
Journal Name
Journal Of Economics And Administrative Sciences
Comparison of Some Methods for Estimating Mixture of Linear Regression Models with Application
...Show More Authors

 A mixture model is used to model data that come from more than one component. In recent years, it became an effective tool in drawing inferences about the complex data that we might come across in real life. Moreover, it can represent a tremendous confirmatory tool in classification observations based on similarities amongst them. In this paper, several mixture regression-based methods were conducted under the assumption that the data come from a finite number of components. A comparison of these methods has been made according to their results in estimating component parameters. Also, observation membership has been inferred and assessed for these methods. The results showed that the flexible mixture model outperformed the

... Show More
View Publication Preview PDF
Crossref
Publication Date
Thu Sep 30 2021
Journal Name
Journal Of Economics And Administrative Sciences
Comparison of Some Methods for Estimating Mixture of Linear Regression Models with Application
...Show More Authors

 A mixture model is used to model data that come from more than one component. In recent years, it became an effective tool in drawing inferences about the complex data that we might come across in real life. Moreover, it can represent a tremendous confirmatory tool in classification observations based on similarities amongst them. In this paper, several mixture regression-based methods were conducted under the assumption that the data come from a finite number of components. A comparison of these methods has been made according to their results in estimating component parameters. Also, observation membership has been inferred and assessed for these methods. The results showed that the flexible mixture model outperformed the others

... Show More
Crossref
Publication Date
Sun Jun 08 2025
Journal Name
Journal Of The College Of Basic Education
The effectiveness of upward training with weights to develop explosive power and speed and some functional variables for young volleyball players
...Show More Authors

The effectiveness of upward training with weights to develop explosive power, characterized by speed and some functional variables for young volleyball players Many efforts of sports laboratories in various countries have been devoted to laying scientific foundations and rules in caring for the physical, skilled, planning, and psychological preparation of players and creating the conditions and requirements for reaching players to higher standards. The research aims to:1- Preparing an ascending training program with weights to develop explosive strength, which is characterized by speed and some functional variables for volleyball players.2- Identify the effect of the training program with upward training in weights to develop explosive stre

... Show More
View Publication
Publication Date
Sun Jun 08 2025
Journal Name
Journal Of Physical Education
Exercises With Different Ranges Of Motion With Significance Of Electrical Activity for Muscle in Strength With Speed Of Lower Limbs For Weight Lifters Of Physical Strength
...Show More Authors

View Publication
Publication Date
Thu Oct 18 2018
Journal Name
Lambert Academic Publishing
Mathematical Models For Contamination Soil
...Show More Authors

ENGLISH

Publication Date
Sun Jun 08 2025
Journal Name
Revista Iberoamericana De Psicología Del Ejercicio Y El Deporte, Issn 1886-8576, Vol. 18, Nº. 4, 2023, Págs. 361-363
The Effect of a Training Curriculum in Developing the Speed Endurance and Strength Characterized By Speed for the Muscles of the Legs for Female Basketball Students
...Show More Authors

Autorías: Mariam Liwa Abdel Fattah, Liqaa Abdullah Ali. Localización: Revista iberoamericana de psicología del ejercicio y el deporte. Nº. 4, 2023. Artículo de Revista en Dialnet.

View Publication Preview PDF
Scopus (1)
Scopus
Publication Date
Mon Oct 01 2018
Journal Name
Journal Of Educational And Psychological Researches
The Effectiveness of Two Educational Models in Acquiring Historical Concepts and Orientation of Fourth Grade Students in History
...Show More Authors

The study focuses on Kamez model and the Claus Meyer model of instructional design, which are models that provide the learner with educational experiences to suit the logical information of the learner and the variety of instructional models. Research Objective: The present research aims to identify Limitations of the study. The current research is determined by ((fourth grade preparatory students, the book of the date of the fourth preparatory course)) Chapter II includes Arabic and foreign studies on the model of Kemp and Claus Mayer in the acquisition of concepts and direction towards the material. Chapter III Experimental Design: The researcher adopted an experimental design with two experimental groups and a control group. The resea

... Show More
View Publication Preview PDF
Publication Date
Wed Jul 17 2019
Journal Name
Advances In Intelligent Systems And Computing
A New Arabic Dataset for Emotion Recognition
...Show More Authors

In this study, we have created a new Arabic dataset annotated according to Ekman’s basic emotions (Anger, Disgust, Fear, Happiness, Sadness and Surprise). This dataset is composed from Facebook posts written in the Iraqi dialect. We evaluated the quality of this dataset using four external judges which resulted in an average inter-annotation agreement of 0.751. Then we explored six different supervised machine learning methods to test the new dataset. We used Weka standard classifiers ZeroR, J48, Naïve Bayes, Multinomial Naïve Bayes for Text, and SMO. We also used a further compression-based classifier called PPM not included in Weka. Our study reveals that the PPM classifier significantly outperforms other classifiers such as SVM and N

... Show More
View Publication
Scopus (15)
Crossref (7)
Scopus Crossref