Urban land uses are in a dynamic state that varies over time, the city of Karbala in Iraq has experienced functional changes over the past 100 years, as the city is characterized by the presence of significant tourist and socio-economic activity represented by religious tourism, and it occur due to various reasons such as urbanization. The purpose of this study is to apply a Markov model to analyze and predict the behavior of transforming the use of land in Karbala city over time. This can include the conversion of agricultural land, or other areas into residential, commercial, industrial land uses. The process of urbanization is typically driven by population growth, economic development, based on a set of probabilities and transitions between different states. They can help decision-makers understand the likely outcomes of different scenarios for the future. The research question is in which direction of the functional during the next 50 years in the case study? What are the values of the prediction of functional changes for future? The research Hypothesis: Urban functions are changed in different areas; agricultural land uses have decreased and land use functions have changed in an unplanned direction in the next 50 years. The study discovered that almost one-third of the agricultural land in Karbala has reduced. Additionally, there has been a 10% alteration in the usage of residential land in slums and other sectors. However, there has been a positive growth in transport, cemeteries, trade, industry, and services, with different degrees of progress.
The tourism industry has become, currently, an art, an industry and a science. It is also one of the components that make up touristic regions. Tourist attractions are no longer the exclusive visits of museums and archeological sites, but also involve other service facilities. It is, therefore, imperative that the authorities should become aware of the degradation of tourist resorts and prevent them from getting worse. Moreover, the authorities should take a set of decisions concerning the protection of the urban aspect with its historical, social, and environmental dimensions, as well as, adapting it to the modern requirements that can bring comfort to the citizens and tourists at physical and psychological levels.
Ferritin is a key organizer of protected deregulation, particularly below risky hyperferritinemia, by straight immune-suppressive and pro-inflammatory things. , We conclude that there is a significant association between levels of ferritin and the harshness of COVID-19. In this paper we introduce a semi- parametric method for prediction by making a combination between NN and regression models. So, two methodologies are adopted, Neural Network (NN) and regression model in design the model; the data were collected from مستشفى دار التمريض الخاص for period 11/7/2021- 23/7/2021, we have 100 person, With COVID 12 Female & 38 Male out of 50, while 26 Female & 24 Male non COVID out of 50. The input variables of the NN m
... Show MoreKnowledge of permeability, which is the ability of rocks to transmit the fluid, is important for understanding the flow mechanisms in oil and gas reservoirs.
Permeability is best measured in the laboratory on cored rock taken from the reservoir. Coring is expensive and time-consuming in comparison to the electronic survey techniques most commonly used to gain information about permeability.
Yamama formation was chosen, to predict the permeability by using FZI method. Yamama Formation is the main lower cretaceous carbonate reservoir in southern of Iraq. This formation is made up mainly of limestone. Yamama formation was deposited on a gradually rising basin floor. The digenesis of Yamama sediments is very important due to its direct
Abstract:
Due to the importance of technology and the accompanying changes of the environment affecting companies that use the technology mainly in their work, especially as most companies live in an unstable dynamic environment, which motivated the researchers to choose the International Company for smart card (Keycard) as a field of research and find ways to them to face Those changes.
The problem of the study was "limited attention to the components of technological change", which included research and development, innovation and information technology, which had an impact on the design decisions of the process (process selection, cust
... Show MoreCOVID 19 has spread rapidly around the world due to the lack of a suitable vaccine; therefore the early prediction of those infected with this virus is extremely important attempting to control it by quarantining the infected people and giving them possible medical attention to limit its spread. This work suggests a model for predicting the COVID 19 virus using feature selection techniques. The proposed model consists of three stages which include the preprocessing stage, the features selection stage, and the classification stage. This work uses a data set consists of 8571 records, with forty features for patients from different countries. Two feature selection techniques are used in
This paper aims to study the damage generated due to creep-fatigue interaction behaviors in solid polyamide 6,6 and its composites that include 1%wt of carbon nanotubes or 30% wt short carbon fiber prepared by an injection technique. The investigation also includes studying the influence of applied temperatures higher than the glass transition temperatures on mechanical properties. The obtained results showed that the addition of reinforcement materials increased all the mechanical properties, while the increase in test temperature reduced all mechanical properties, especially for polyamide 6,6. The creep-fatigue interaction resistance also improved due to the addition of reinforcement materials by inc
... Show More<span lang="EN-US">Diabetes is one of the deadliest diseases in the world that can lead to stroke, blindness, organ failure, and amputation of lower limbs. Researches state that diabetes can be controlled if it is detected at an early stage. Scientists are becoming more interested in classification algorithms in diagnosing diseases. In this study, we have analyzed the performance of five classification algorithms namely naïve Bayes, support vector machine, multi layer perceptron artificial neural network, decision tree, and random forest using diabetes dataset that contains the information of 2000 female patients. Various metrics were applied in evaluating the performance of the classifiers such as precision, area under the c
... Show More