A set of hydro treating experiments are carried out on vacuum gas oil in a trickle bed reactor to study the hydrodesulfurization and hydrodenitrogenation based on two model compounds, carbazole (non-basic nitrogen compound) and acridine (basic nitrogen compound), which are added at 0–200 ppm to the tested oil, and dibenzotiophene is used as a sulfur model compound at 3,000 ppm over commercial CoMo/ Al2O3 and prepared PtMo/Al2O3. The impregnation method is used to prepare (0.5% Pt) PtMo/Al2O3. The basic sites are found to be very small, and the two catalysts exhibit good metal support interaction. In the absence of nitrogen compounds over the tested catalysts in the trickle bed reactor at temperatures of 523 to 573 K, liquid hourly space velocity 1 to 3 hr−1 , and a pressure range of 16 to 20 bar, the results show an increase in conversion from 0.2214 to 0.6748 and 0.2920 to 0.7341 for CoMo and PtMo, respectively, with the increase of temperature, a little positive effect on conversions when pressure increases, and a significant decrease in conversion: 0.6748 to 0.3284 and 0.7341 to 0.3734 for CoMo and PtMo, respectively, when liquid hourly space velocity increases. The results showed a first-order kinetic of Dibenzothiphene (DBT) hydrodesulphurization. The activation energies are 75.399 and 67.983 kJ/mol for hydrodesulphurization of DBT over CoMo and PtMo, respectively.
In the absence of environmental regulation, food stays to be contaminated with heavy metals, which is becoming a big worry for human health. The present research focusses on the environmental and health effects of irrigating a number of crops grown in the soils surrounding the Al-Rustamia old plant using treated wastewater generated by the plant. The physicochemical properties, alkalinity, and electrical conductivity of the samples were evaluated, and vegetable samples were tested for Cd, Pb, Ni, and Zn, levels, and even the transfer factor (TF) from soils to crops and crop and multi-targeted risk, daily intake (DIM) of metals, and health risk index (HRI) was calculated. The findings found that the average contents of Zn, Pb, Ni, and Cd in
... Show MoreI've made extensive studies on the distribution of the electric field stable heterogeneous within intensive that contain metal rings with slope diagonal positive to a site halfway to be in its maximum value, followed by decline negative and equally to the other end of the concentrated distributed by electric stable thanking sequentially and have focused empirical studies in the pastthe molecules that you focused Pantqaúha during passage
The effective surface area of drug particle is increased by a reduction in the particle size. Since dissolution takes place at the surface of the solute, the larger the surface area, the further rapid is the rate of drug dissolution. Ketoprofen is class II type drug according to (Biopharmaceutics Classification System BCS) with low solubility and high permeability. The aim of this investigation was to increase the solubility and hence the dissolution rate by the preparation of ketoprofen nanosuspension using solvent evaporation method. Materials like PVP K30, poloxamer 188, HPMC E5, HPMC E15, HPMC E50, Tween 80 were used as stabilizers in perpetration of differ
... Show MoreThe weather of Iraq has longer summer season compared with other countries. The ambient temperature during this season reaches over 50 OC which makes the evaporative cooling system suitable for this climate. In present work, the two-stage evaporative cooling system is studied. The first stage is indirect evaporative cooling (IEC) represented by two heat exchangers with the groundwater flow rate (5 L/min). The second stage is direct evaporative cooling (DEC) which represents three pads with groundwater flow rates of (4.5 L/min). The experimental work was conducted in July, August, September, and October in Baghdad. Results showed that overall evaporative efficiency of the system (two coils with three pads each
... Show Morethe research ptesents a proposed method to compare or determine the linear equivalence of the key-stream from linear or nonlinear key-stream
The synchronization of a complex network with optoelectronic feedback has been introduced theoretically, with use of 2×2 oscillators network; each oscillator considered is an optocoupler (LED coupled with photo-detector). Fixing the bias current (δ) and increasing the feedback strength (Ԑ) of each oscillator, the dynamical sequence like chaotic and periodic mixed mode oscillations has been observed. Synchronization of unidirectionally coupled of light emitting diodes network has been featured when coupling strength equal to 1.7×10-4. The transition between non-synchronization and synchronization states by means of the spatio-temporal distribution has been investigated.
A steganography hides information within other information, such as file, message, picture, or video. A cryptography is the science of converting the information from a readable form to an unreadable form for unauthorized person. The main problem in the stenographic system is embedding in cover-data without providing information that would facilitate its removal. In this research, a method for embedding data into images is suggested which employs least significant bit Steganography (LSB) and ciphering (RSA algorithm) to protect the data. System security will be enhanced by this collaboration between steganography and cryptography.
This paper includes an experimental study of hydrogen mass flow rate and inlet hydrogen pressure effect on the fuel cell performance. Depending on the experimental results, a model of fuel cell based on artificial neural networks is proposed. A back propagation learning rule with the log-sigmoid activation function is adopted to construct neural networks model. Experimental data resulting from 36 fuel cell tests are used as a learning data. The hydrogen mass flow rate, applied load and inlet hydrogen pressure are inputs to fuel cell model, while the current and voltage are outputs. Proposed model could successfully predict the fuel cell performance in good agreement with actual data. This work is extended to developed fuel cell feedback
... Show MoreCOVID 19 has spread rapidly around the world due to the lack of a suitable vaccine; therefore the early prediction of those infected with this virus is extremely important attempting to control it by quarantining the infected people and giving them possible medical attention to limit its spread. This work suggests a model for predicting the COVID 19 virus using feature selection techniques. The proposed model consists of three stages which include the preprocessing stage, the features selection stage, and the classification stage. This work uses a data set consists of 8571 records, with forty features for patients from different countries. Two feature selection techniques are used in