Traffic classification is referred to as the task of categorizing traffic flows into application-aware classes such as chats, streaming, VoIP, etc. Most systems of network traffic identification are based on features. These features may be static signatures, port numbers, statistical characteristics, and so on. Current methods of data flow classification are effective, they still lack new inventive approaches to meet the needs of vital points such as real-time traffic classification, low power consumption, ), Central Processing Unit (CPU) utilization, etc. Our novel Fast Deep Packet Header Inspection (FDPHI) traffic classification proposal employs 1 Dimension Convolution Neural Network (1D-CNN) to automatically learn more representational c
... Show MoreSoftware Defined Networking (SDN) with centralized control provides a global view and achieves efficient network resources management. However, using centralized controllers has several limitations related to scalability and performance, especially with the exponential growth of 5G communication. This paper proposes a novel traffic scheduling algorithm to avoid congestion in the control plane. The Packet-In messages received from different 5G devices are classified into two classes: critical and non-critical 5G communication by adopting Dual-Spike Neural Networks (DSNN) classifier and implementing it on a Virtualized Network Function (VNF). Dual spikes identify each class to increase the reliability of the classification
... Show MoreIn Baghdad city, Iraq, the traffic volumes have rapidly grown during the last 15 years. Road networks need to reevaluate and decide if they are operating properly or not regarding the increase in the number of vehicles. Al-Jadriyah intersection (a four-leg signalized intersection) and Kamal Junblat Square (a multi-lane roundabout), which are two important intersections in Baghdad city with high traffic volumes, were selected to be reevaluated by the SIDRA package in this research. Traffic volume and vehicle movement data were abstracted from videotapes by the Smart Traffic Analyzer (STA) Software. The performance measures include delay and LOS. The analysis results by SIDRA Intersection 8.0.1 show that the performance of the roundab
... Show MoreIn this paper, a FPGA model of intelligent traffic light system with power saving was built. The intelligent traffic light system consists of sensors placed on the side's ends of the intersection to sense the presence or absence of vehicles. This system reduces the waiting time when the traffic light is red, through the transition from traffic light state to the other state, when the first state spends a lot of time, because there are no more vehicles. The proposed system is built using VHDL, simulated using Xilinx ISE 9.2i package, and implemented using Spartan-3A XC3S700A FPGA kit. Implementation and Simulation behavioral model results show that the proposed intelligent traffic light system model satisfies the specified operational req
... Show MoreThe current study presents the simulative study and evaluation of MANET mobility models over UDP traffic pattern to determine the effects of this traffic pattern on mobility models in MANET which is implemented in NS-2.35 according to various performance metri (Throughput, AED (Average End-2-end Delay), drop packets, NRL (Normalize Routing Load) and PDF (Packet Delivery Fraction)) with various parameters such as different velocities, different environment areas, different number of nodes, different traffic rates, different traffic sources, different pause times and different simulation times . A routing protocol.…was exploited AODV(Adhoc On demand Distance Vector) and RWP (Random Waypoint), GMM (Gauss Markov Model), RPGM (Refere
... Show MoreAbstract The purpose of this paper is to preparing small games for fifth graders. And to identify the impact of these small games in developing some concepts of traffic safety for fifth graders. The two researchers used the experimental method to solve the research problem, and the research community was identified with students. The fifth grade of primary school in the province of Baghdad and a sample was chosen from the private Baghdad Primary School, which numbered (60) male and female students. They were distributed equally into two groups by simple random method (experimental and control groups). As for the most important conclusions reached by the two researchers, it is the presence of an effect of small games in developing some conce
... Show MoreThe aim of this research is to know the effect of two strategies of active learning, the five fingers and traffic signals, on the first grade intermediate level student's achievement and personal intelligence. The research sample was chosen from the Al- Mansour intermediate school for boys, including (101) students divided into three groups chosen randomly which represented the first experimental group (32) students, the second experimental group (34) students, and the control group (33) students. To achieve the research aims, the research prepared a physics achievement test containing (26) items, and a personal intelligence test containing (20) items. The psychometric characteristics, of the tests were checked up the following results were
... Show More<p>The demand for internet applications has increased rapidly. Providing quality of service (QoS) requirements for varied internet application is a challenging task. One important factor that is significantly affected on the QoS service is the transport layer. The transport layer provides end-to-end data transmission across a network. Currently, the most common transport protocols used by internet application are TCP (Transmission Control Protocol) and UDP (User Datagram Protocol). Also, there are recent transport protocols such as DCCP (data congestion control protocol), SCTP (stream congestion transmission protocol), and TFRC (TCP-friendly rate control), which are in the standardization process of Internet Engineering Task
... Show MoreDue to the huge variety of 5G services, Network slicing is promising mechanism for dividing the physical network resources in to multiple logical network slices according to the requirements of each user. Highly accurate and fast traffic classification algorithm is required to ensure better Quality of Service (QoS) and effective network slicing. Fine-grained resource allocation can be realized by Software Defined Networking (SDN) with centralized controlling of network resources. However, the relevant research activities have concentrated on the deep learning systems which consume enormous computation and storage requirements of SDN controller that results in limitations of speed and accuracy of traffic classification mechanism. To fill thi
... Show More