This paper describes the digital chaotic signal with ship map design. The robust digital implementation eliminates the variation tolerance and electronics noise problems common in analog chaotic circuits. Generation of good non-repeatable and nonpredictable random sequences is of increasing importance in security applications. The use of 1-D chaotic signal to mask useful information and to mask it unrecognizable by the receiver is a field of research in full expansion. The piece-wise 1-D map such as ship map is used for this paper. The main advantages of chaos are the increased security of the transmission and ease of generation of a great number of distinct sequences. As consequence, the number of users in the systems can be increased. Recent investigations show that wireless communication systems are very promising application area of chaotic dynamics. A feature of chaotic signals is super wide bandwidth; the power spectrum extends both to the region of very low frequencies as well as to high frequencies. For the proposed system, the bandwidth is extended from approximately 100 Hz to 50 MHz. The nature of chaotic signal is an aperiodic. Therefore, the resolution of the proposed system is high to provide an aperiodicity of the chaotic signal. In practice the following simulation results on MATLAB software platform show that the effectiveness of the model described which has low-cross-correlation and can meet the actual need. Simulation results show sequence length in 264-1-bit with cross-correlation less than 0.0025 for our architecture.
The investigation of signature validation is crucial to the field of personal authenticity. The biometrics-based system has been developed to support some information security features.Aperson’s signature, an essential biometric trait of a human being, can be used to verify their identification. In this study, a mechanism for automatically verifying signatures has been suggested. The offline properties of handwritten signatures are highlighted in this study which aims to verify the authenticity of handwritten signatures whether they are real or forged using computer-based machine learning techniques. The main goal of developing such systems is to verify people through the validity of their signatures. In this research, images of a group o
... Show MoreIn cyber security, the most crucial subject in information security is user authentication. Robust text-based password methods may offer a certain level of protection. Strong passwords are hard to remember, though, so people who use them frequently write them on paper or store them in file for computer .Numerous of computer systems, networks, and Internet-based environments have experimented with using graphical authentication techniques for user authentication in recent years. The two main characteristics of all graphical passwords are their security and usability. Regretfully, none of these methods could adequately address both of these factors concurrently. The ISO usability standards and associated characteristics for graphical
... Show MoreVol. 6, Issue 1 (2025)
Merging biometrics with cryptography has become more familiar and a great scientific field was born for researchers. Biometrics adds distinctive property to the security systems, due biometrics is unique and individual features for every person. In this study, a new method is presented for ciphering data based on fingerprint features. This research is done by addressing plaintext message based on positions of extracted minutiae from fingerprint into a generated random text file regardless the size of data. The proposed method can be explained in three scenarios. In the first scenario the message was used inside random text directly at positions of minutiae in the second scenario the message was encrypted with a choosen word before ciphering
... Show MoreEmotion recognition has important applications in human-computer interaction. Various sources such as facial expressions and speech have been considered for interpreting human emotions. The aim of this paper is to develop an emotion recognition system from facial expressions and speech using a hybrid of machine-learning algorithms in order to enhance the overall performance of human computer communication. For facial emotion recognition, a deep convolutional neural network is used for feature extraction and classification, whereas for speech emotion recognition, the zero-crossing rate, mean, standard deviation and mel frequency cepstral coefficient features are extracted. The extracted features are then fed to a random forest classifier. In
... Show MoreThis study examines the vibrations produced by hydropower operations to improve embankment dam safety. This study consists of two parts: In the first part, ANSYS-CFX was used to generate a three-dimensional (3-D) finite volume (FV) model to simulate a vertical Francis turbine unit in the Mosul hydropower plant. The pressure pattern result of the turbine model was transformed into the dam body to show how the turbine unit's operation affects the dam's stability. The upstream reservoir conditions, various flow rates, and fully open inlet gates were considered. In the second part of this study, a 3-D FE Mosul dam model was simulated using an ANSYS program. The operational turbine model's water pressure pattern is conveyed t
... Show MoreIn this work we present a technique to extract the heart contours from noisy echocardiograph images. Our technique is based on improving the image before applying contours detection to reduce heavy noise and get better image quality. To perform that, we combine many pre-processing techniques (filtering, morphological operations, and contrast adjustment) to avoid unclear edges and enhance low contrast of echocardiograph images, after implementing these techniques we can get legible detection for heart boundaries and valves movement by traditional edge detection methods.
In this paper, a fast lossless image compression method is introduced for compressing medical images, it is based on splitting the image blocks according to its nature along with using the polynomial approximation to decompose image signal followed by applying run length coding on the residue part of the image, which represents the error caused by applying polynomial approximation. Then, Huffman coding is applied as a last stage to encode the polynomial coefficients and run length coding. The test results indicate that the suggested method can lead to promising performance.