Recognizing speech emotions is an important subject in pattern recognition. This work is about studying the effect of extracting the minimum possible number of features on the speech emotion recognition (SER) system. In this paper, three experiments performed to reach the best way that gives good accuracy. The first one extracting only three features: zero crossing rate (ZCR), mean, and standard deviation (SD) from emotional speech samples, the second one extracting only the first 12 Mel frequency cepstral coefficient (MFCC) features, and the last experiment applying feature fusion between the mentioned features. In all experiments, the features are classified using five types of classification techniques, which are the Random Forest (RF), k-Nearest Neighbor (k-NN), Sequential Minimal Optimization (SMO), Naïve Bayes (NB), and Decision Tree (DT). The performance of the system validated over Surrey Audio-Visual Expressed Emotion (SAVEE) dataset for seven emotions. The results of the experiments showed given good accuracy compared with the previous studies using a fusion of a few numbers of features with the RF classifier.
Speech is the ability of communication or expression of thoughts among people in spoken words. Human communication via speech is essential since any impairment in this process may have serious social and occupational consequences. Malocclusion is a possible cause of speech impairment in addition to many other etiological factors like hearing loss, neurological disorders, physical disorders, and drug abuse. This article throws light upon the association between speech disorders and malocclusion.
Audio classification is the process to classify different audio types according to contents. It is implemented in a large variety of real world problems, all classification applications allowed the target subjects to be viewed as a specific type of audio and hence, there is a variety in the audio types and every type has to be treatedcarefully according to its significant properties.Feature extraction is an important process for audio classification. This workintroduces several sets of features according to the type, two types of audio (datasets) were studied. Two different features sets are proposed: (i) firstorder gradient feature vector, and (ii) Local roughness feature vector, the experimentsshowed that the results are competitive to
... Show MoreWith the quick grow of multimedia contents, from among this content, face recognition has got a lot of significant, specifically in latest little years. The face as object formed of various recognition characteristics for detect; so, it is still the most challenge research domain for researchers in area of image processing and computer vision. In this survey article, tried to solve the most demanding facial features like illuminations, aging, pose variation, partial occlusion and facial expression. Therefore, it indispensable factors in the system of facial recognition when performed on facial pictures. This paper study the most advanced facial detection techniques too, approaches: Hidden Markov Models, Principal Component Analysis (PCA)
... Show MoreIn recent years, there has been expanding development in the vehicular part and the number of vehicles moving on the roads in all the sections of the country. Arabic vehicle number plate identification based on image processing is a dynamic area of this work; this technique is used for security purposes such as tracking of stolen cars and access control to restricted areas. The License Plate Recognition System (LPRS) exploits a digital camera to capture vehicle plate numbers is used as input to the proposed recognition system. Basically, the proposed system consists of three phases, vehicle license plate localization, character segmentation, and character recognition, the License Plate (LP) detection is presented using canny edge detection
... Show MorePolitical speeches are represented in different shapes as political forum, events or as inaugural speech. This research critically analyzes the inaugural Speech of the President Donald Trump which was delivered on 20th ,January, 2017 from the site<www.cnn.com> retrieved on 10th ,May,2017. The objectives of the study are: First: classifying and discussing well known micro structures (linguistic feature) of the speech, and second: classifying the macro structures i.e. the delivered political inaugural speech in which he includes social structures. To reach to the objectives of the study, the researcher will adopt Norman Fairclough’s three dimensional Analytical Model(
... Show MoreConsidering the science of speech in the light of its purposes is an accurate scientific study that looks at it from its reality in which it originated, and its topic that it dealt with and its goals that it sought, and it follows its main course in the directions of approving the belief and inferring it, and repelling the objections to it, and this study comes to show the realism of the science of speech in its emergence Its subject and method, since its launch was from the reality of the Islamic nation and based on its intellectual needs, so its presence was necessary in the life of the Islamic nation because of its role in facing the challenges faced by the Islamic faith, and the dangers it was exposed to as a result of the intellectu
... Show MoreSome of the main challenges in developing an effective network-based intrusion detection system (IDS) include analyzing large network traffic volumes and realizing the decision boundaries between normal and abnormal behaviors. Deploying feature selection together with efficient classifiers in the detection system can overcome these problems. Feature selection finds the most relevant features, thus reduces the dimensionality and complexity to analyze the network traffic. Moreover, using the most relevant features to build the predictive model, reduces the complexity of the developed model, thus reducing the building classifier model time and consequently improves the detection performance. In this study, two different sets of select
... Show More