Catalytic microwave-assisted pyrolysis of biomass is gaining popularity as an alternative to fossil fuels due to health, environmental, climate, and economic issues. This study conducted a catalytic pyrolysis process of the Albizia plant's branches using an Iraqi clay catalyst (bentonite) focusing on the variables including the biomass-particle size, experimental time, microwave power level, and the catalyst-to-biomass ratio. The physical and chemical properties of the resulting biofuel were analyzed presented by HHV, acidity, density, viscosity, GC-MS, FTIR for bio-oil and SEM, EDX, BET, HHV, FTIR for biochar. The study revealed that addition of bentonite as a catalyst led to enhanced production of biogas produced from 5% to 45% and decreased the power level used from 700 W to 450 W. Also, it raised the production of bio-oil generated with less power level and duration time. The addition of catalyst also affected the characteristics of bio-oil produced such as reducing the acidity by increasing its pH from 5 to 5.7, lowering the viscosity from 4.8 to 3.3 cSt, and the density from 1045 to 1039.2 kg/m3. Adding catalyst increased the percentage of aromatic and alcoholic substances in the bio-oil which led to improve the calorific value from 19.5 to 23 MJ/kg. Additionally, the biochar properties also improved, where the surface area and pore volume increased from 0.5512 to 40.384 m2/g and 0.00011 to 0.0361cm3/g respectively. The higher heating value was raised from 23.5 to 25 MJ/kg also. CH4 is also increased from 3.6 to 8.6% which is one of the essential fuel gasses.
The settlement rate and pore water pressure dissipation rate are mainly controlled by the permeability of soil. Both laboratory and field tests show that the permeability is varied during the loading and consolidation process. It is known that consolidation process is accompanied by decrease in void ratio which leads to decrease in the coefficient of permeability. The importance of the decrease of the coefficient of permeability on the time rate of settlement and pore water pressure needs to be investigated.
This paper takes into account the change in coefficient of permeability during consolidation and studies its effect on consolidation characteristics of a clay layer. The finite element method is used in the analysis and the packag
The research dealt with the subject of measuring the competitive performance of the National Insurance Company and some of its branches (Basra, Ninwa, Kirkuk and Babil), Depending on the Revenue Growth Index at the activity level, and the Revealed Comparative Advantage Index RCAIAt the branch level,To measure the competitiveness of the company And some branches, As the problem of research in the lack of adoption by some companies in the insurance service sector on scientific indicators to measure their competitive performance, The aims of the research is to measure the competitiveness of the National Insurance Company, as well as the competitiveness of its branches according to the scientific method, One of the main Conclusions of the re
... Show MoreIron oxide(Fe3O4) nanoparticles of different sizes and shapes were synthesized by solve-hydrothermal reaction assisted by microwave irradiation using ferrous ammonium sulfate as a metal precursor, oleic acid as dispersing agent, ethanol as reducing agent and NaOH as precipitating agent at pH=12. The synthesized Fe3O4 nano particles were characterized by X-ray diffraction (XRD), FTIR and thermal analysis TG-DTG. Sizes and shapes of Fe3O4 nanoparticles were characterized by Scanning Electron Microscopy (SEM), and atomic force microscopy (AFM).
The isomerization of n-hexane on platinum loaded acidic zeolite was studied at atmospheric pressure, H2/nC6 molar ratios of 1-4 and temperature range of 240-270ºC. The measured kinetic data were fitted to an equation based on the bifunctional mechanism and by using independently obtained dehydrogenation and adsorption data. The activation energies of protonation (ΔHpro) and the elementary isomerization step (Eact,iso) and as well as the corresponding preexponential factor were simultaneously determined. The observed values of both ΔHpro and Eact,iso are in agreement with the results of quantum-chemical calculations.
Atmospheric residue fluid catalytic cracking was selected as a probe reaction to test the catalytic performance of modified NaY zeolites and prepared NaY zeolites. Modified NaY zeolites have been synthesized by simple ion exchange methods. Three samples of modified zeolite Y have been obtained by replacing the sodium ions in the original sample with lanthanum and the weight percent added are 0.28, 0.53, and 1.02 respectively. The effects of addition of lanthanum to zeolite Y in different weight percent on the cracking catalysts were investigated using an experimental laboratory plant scale of fluidized bed reactor.
The experiments have been performed with weight hourly space velocity (WHSV) range of 6 to 24 h
... Show More