Catalytic microwave-assisted pyrolysis of biomass is gaining popularity as an alternative to fossil fuels due to health, environmental, climate, and economic issues. This study conducted a catalytic pyrolysis process of the Albizia plant's branches using an Iraqi clay catalyst (bentonite) focusing on the variables including the biomass-particle size, experimental time, microwave power level, and the catalyst-to-biomass ratio. The physical and chemical properties of the resulting biofuel were analyzed presented by HHV, acidity, density, viscosity, GC-MS, FTIR for bio-oil and SEM, EDX, BET, HHV, FTIR for biochar. The study revealed that addition of bentonite as a catalyst led to enhanced production of biogas produced from 5% to 45% and decreased the power level used from 700 W to 450 W. Also, it raised the production of bio-oil generated with less power level and duration time. The addition of catalyst also affected the characteristics of bio-oil produced such as reducing the acidity by increasing its pH from 5 to 5.7, lowering the viscosity from 4.8 to 3.3 cSt, and the density from 1045 to 1039.2 kg/m3. Adding catalyst increased the percentage of aromatic and alcoholic substances in the bio-oil which led to improve the calorific value from 19.5 to 23 MJ/kg. Additionally, the biochar properties also improved, where the surface area and pore volume increased from 0.5512 to 40.384 m2/g and 0.00011 to 0.0361cm3/g respectively. The higher heating value was raised from 23.5 to 25 MJ/kg also. CH4 is also increased from 3.6 to 8.6% which is one of the essential fuel gasses.
The subject of this research involves studying adsorption to removal herbicide Atlantis WG from aqueous solutions by bentonite clay. The equilibrium concentration have been determined spectra photometry by using UV-Vis spectrophotometer. The experimental equilibrium sorption data were analyzed by two widely, Langmuir and Freundlish isotherm models. The Langmuir model gave a better fit than Freundlich model The adsorption amount of (Atlantis WG) increased when the temperature and pH decreased. The thermodynamic parameters like ?G, ?H, and ?S have been calculated from the effect of temperature on adsorption process, is exothermic. The kinetic of adsorption process was studied depending on Lagergren ,Morris ? Weber and Rauschenberg equati
... Show MoreLight naphtha treatment was achieved over 0.3wt%Pt loaded-alumina, HY-zeolite and Zr/W/HY-zeolite catalysts at temperature rang of 240-370°C, hydrogen to hydrocarbon mole ratio of 1-4 0.75-3 wt/wt/hr, liquid hourly space velocity (LHSV) and at atmospheric pressure. The hydroconversion of light naphtha over Pt loaded catalyst shows two main reactions; hydrocracking and hydroisomerization reactions. The catalytic conversion of a light naphtha is greatly influenced by reaction temperature, LHSV, and catalyst function. Naphtha transformation (hyroisomerization, cracking and aromatization) increases with decreasing LHSV and increasing temperature except hydroisomerization activity increases with increasing of temperature till 300°C then began
... Show MoreBarium–doped TiO2 / n-Si photodetector was fabricated by spray pyrolysis exhibited visible enhancement responsivity profile with peak response at 600 nm flat response between 650 and 900 nm. The quantum efficiency was 30% and specific detectivity was 5x1012 W-1Hz1/2cm at peak response. The GaAlAs laser diode was used to estimate the rise time of the detector.
In this research a local adsorbent was prepared from waste tires using two-step pyrolysis method. In the carbonization process, nitrogen gas flow rate was 0.2L/min at carbonization temperature of 500ºC for 1h. The char products were then preceded to the activation process at 850°C under carbon dioxide (CO2) activation flow rate of 0.6L/min for 3h. The activation method produced local adsorbent material with a surface area and total pore volume as high as 118.59m2 /g and 0.1467cm3/g, respectively. The produced . local adsorbent (activated carbon) was used for adsorption of lead from aqueous solution. The continuous fixed bed column experiments were conducted. The adsorption capacity performance of prepared activated carbons in this work
... Show MoreThe present study is a hybrid method of studying the effect of plasma on the living tissue by using the image processing technique. This research explains the effect of microwave plasma on the DNA cell using the comet score application, texture analysis image processing and the effect of microwave plasma on the liver using texture analysis image processing. The study was applied on the mice cells. The exposure to the plasma is done by dividing the mice for four groups, each group includes four mice (control group, 20, 50, 90 second exposure to microwave plasma). The exposure to microwave plasma was done with voltage 175v and gas flow on 2 with room temperature; the statistical features are obtained from the comet score images and the textur
... Show MoreThis study examined the adsorption behavior of anionic dye (orange G) from aqueous solution onto the raw and activated a mixture of illite, kaolinite and chlorite clays from area of Zorbatiya (east of Iraq).The chemical treatment involved alkali and acid activation. The alkali activation obtained by treated the raw clay (RC) with 5M NaOH (ACSO) and the acid activation founded by treated it with 0.25M HCl (ACH) and 0.25M (ACS). The thermal treatment carried out by calcination the produce activated clay at 750oC for acid activation and 105oC for alkali activation. Batch
... Show MoreThis paper is summarized with one of the applications of adsorption behavior; A UV-Vis method has been applied to survey the isotherm of adsorption. Results for experimental showed the applicability of Langmuir equation. The effect of temperature on the adsorption of cobalt (II) Complex by bentonite surface was studied. The results shown that the amount of adsorption was formed to increase, such as the temperature increase (Endothermic process). Cobalt (II) Complex has adsorption studies by bentonite surface at different pH values (1.6-10); these studies displayed an increase in adsorption with increasing pH. ∆G, ∆H, and ∆S thermodynamic functions of the cobalt (II) Complex for their adsorption have been calculated
