Catalytic microwave-assisted pyrolysis of biomass is gaining popularity as an alternative to fossil fuels due to health, environmental, climate, and economic issues. This study conducted a catalytic pyrolysis process of the Albizia plant's branches using an Iraqi clay catalyst (bentonite) focusing on the variables including the biomass-particle size, experimental time, microwave power level, and the catalyst-to-biomass ratio. The physical and chemical properties of the resulting biofuel were analyzed presented by HHV, acidity, density, viscosity, GC-MS, FTIR for bio-oil and SEM, EDX, BET, HHV, FTIR for biochar. The study revealed that addition of bentonite as a catalyst led to enhanced production of biogas produced from 5% to 45% and decreased the power level used from 700 W to 450 W. Also, it raised the production of bio-oil generated with less power level and duration time. The addition of catalyst also affected the characteristics of bio-oil produced such as reducing the acidity by increasing its pH from 5 to 5.7, lowering the viscosity from 4.8 to 3.3 cSt, and the density from 1045 to 1039.2 kg/m3. Adding catalyst increased the percentage of aromatic and alcoholic substances in the bio-oil which led to improve the calorific value from 19.5 to 23 MJ/kg. Additionally, the biochar properties also improved, where the surface area and pore volume increased from 0.5512 to 40.384 m2/g and 0.00011 to 0.0361cm3/g respectively. The higher heating value was raised from 23.5 to 25 MJ/kg also. CH4 is also increased from 3.6 to 8.6% which is one of the essential fuel gasses.
Chemiluminescenc (CL), light emitted during chemical reaction, is one of the accurate methods used to detect directly oxygen free radicals. In this study, luminol was used as CL detector, to detect the concentration of free radicals formed in whole blood exposed to high power microwave pulses. The changes in the intensity of CL signal gives a clear relation between the concentration of free radicals formed by radiation in blood and changes in blood properties such as hemolysis of blood cells. This is done by measuring the electrical sytoplsimic electrical properties, the results are substituted in Maxwell-Wagner equation, to obtain electrical conductivity of cytoplasm, which is 18.3 ms/cm, while at suspension med
... Show MoreIn this paper, construction microwaves induced plasma jet(MIPJ) system. This system was used to produce a non-thermal plasma jet at atmospheric pressure, at standard frequency of 2.45 GHz and microwave power of 800 W. The working gas Argon (Ar) was supplied to flow through the torch with adjustable flow rate by using flow meter, to diagnose microwave plasma optical emission spectroscopy(OES) was used to measure the important plasma parameters such as electron temperature (Te), residence time (Rt), plasma frequency (?pe), collisional skin depth (?), plasma conductivity (?dc), Debye length(?D). Also, the density of the plasma electron is calculated with the use of Stark broadened profiles
X-ray diffraction pattern reveled the tetragonal crystal system of SnO2 Thin films of SnO2 were prepared on glass substrates using Spray Pyrolysis Technique. The absorption and transmition spectra were recorded in the rang of 300-900nm, the spectral dependences of absorption coefficient were calculated from transmission spectra. The direct and allowed optical energy gap has been evaluated from plots of (αhυ)² vs. (hυ) . The energy gap was found to be 2.4-2.6eV. The optical constant such as extinction coefficient( k ) and absorption coefficient ( α) have been evaluated.
In this study, silica-graphene oxide nano–composites were prepared by sol-gel technique and deposited by spray pyrolysis method on glass substrate. The effect of changing the graphene/silica ratio on the optical properties and wetting of these nano–structures has been investigated. The structural and morphological properties of the thin films have been studied by x-ray diffraction spectroscopy (XRD), field emission scanning electron microscope (FESEM), energy dispersive x-ray spectroscopy (EDS) and atomic force microscope (AFM). XRD results show that silica structures present in the synthesized films exhibit amorphous character and there is a poor arrangement in graphene plates al
Proved Islamic banks in many countries where they are present, whether Muslim or non-Muslim in the wake of the global financial crisis, it is more efficient, profitable, and stable compared with the conventional banks, so went many of the worlds towards providing Islamic banking through Islamic windows to Besides financial services and products offered by the traditional, or the initiative to enter formulas Islamic finance is fully compliant with the principles and rules of Islamic law and is Brokerage basic function of conventional banks and Islamic alike ) and that means working on the mobilization of savings from surplus units and directed towards the financial units of the fiscal deficit) , which operates commercial banks
... Show MoreThis research dealt with the impact of internal control on tax performance using balanced scorecard indicators because of its special importance in improving tax performance and reform. The internal control system is a safety valve for senior management in all organizations, it plays an important role in the regularity and development of work and the fight against corruption To provide reliable and accurate data and information, follow up on compliance with laws, regulations and instructions. The aim of this research is to demonstrate how control affects tax performance and how to adapt internal control components to improve tax performance. In the General Authority for taxes and its branches,. The research resulted in a number of conclu
... Show MoreIn this study a new composite material have been prepared and characterized through polymerization of ethylene glycol located between the Bentonite layers with phthalic anhydride. The results showed that the polymer binds with the structure of clay through hydrogen bonding also the polymerization process led to shatter of the three-dimension crystal structure of the clay and isolating layers in the form of nano-scale two-dimensional sheets, the polymer growth around the clay isolated layers work to increase the size particles at microscopic scale. &
... Show MoreIn this work, a ceramic model has obtained from Iraqi bentonite as a base material with limited additions of alumina and silica. The selected material can bear temperatures higher than the bearing temperature of bentonite as it achieved tolerance temperatures (1300°C) based on X-ray diffraction patterns. It was found that the addition of alumina and silica led to the occurrence of basic phases such as mullite, quartz, cordierite and feldspar in percentages that depended on the percentage of addition in the mixture and the firing temperature, which was (1000-1300)°C.
Pyrolysis of high density polyethylene (HDPE) was carried out in a 750 cm3 stainless steel autoclave reactor, with temperature ranging from 470 to 495° C and reaction times up to 90 minute. The influence of the operating conditions on the component yields was studied. It was found that the optimum cracking condition for HDPE that maximized the oil yield to 70 wt. % was 480°C and 20 minutes. The results show that for higher cracking temperature, and longer reaction times there was higher production of gas and coke. Furthermore, higher temperature increases the aromatics and produce lighter oil with lower viscosity.