Home New Trends in Information and Communications Technology Applications Conference paper Audio Compression Using Transform Coding with LZW and Double Shift Coding Zainab J. Ahmed & Loay E. George Conference paper First Online: 11 January 2022 126 Accesses Part of the Communications in Computer and Information Science book series (CCIS,volume 1511) Abstract The need for audio compression is still a vital issue, because of its significance in reducing the data size of one of the most common digital media that is exchanged between distant parties. In this paper, the efficiencies of two audio compression modules were investigated; the first module is based on discrete cosine transform and the second module is based on discrete wavelet transform. The proposed audio compression system consists of the following steps: (1) load digital audio data, (2) transformation (i.e., using bi-orthogonal wavelet or discrete cosine transform) to decompose the audio signal, (3) quantization (depend on the used transform), (4) quantization of the quantized data that separated into two sequence vectors; runs and non-zeroes decomposition to apply the run length to reduce the long-run sequence. Each resulted vector is passed into the entropy encoder technique to implement a compression process. In this paper, two entropy encoders are used; the first one is the lossless compression method LZW and the second one is an advanced version for the traditional shift coding method called the double shift coding method. The proposed system performance is analyzed using distinct audio samples of different sizes and characteristics with various audio signal parameters. The performance of the compression system is evaluated using Peak Signal to Noise Ratio and Compression Ratio. The outcomes of audio samples show that the system is simple, fast and it causes better compression gain. The results show that the DSC encoding time is less than the LZW encoding time.
Image compression plays an important role in reducing the size and storage of data while increasing the speed of its transmission through the Internet significantly. Image compression is an important research topic for several decades and recently, with the great successes achieved by deep learning in many areas of image processing, especially image compression, and its use is increasing Gradually in the field of image compression. The deep learning neural network has also achieved great success in the field of processing and compressing various images of different sizes. In this paper, we present a structure for image compression based on the use of a Convolutional AutoEncoder (CAE) for deep learning, inspired by the diversity of human eye
... Show MoreThis paper is concerned with combining two different transforms to present a new joint transform FHET and its inverse transform IFHET. Also, the most important property of FHET was concluded and proved, which is called the finite Hankel – Elzaki transforms of the Bessel differential operator property, this property was discussed for two different boundary conditions, Dirichlet and Robin. Where the importance of this property is shown by solving axisymmetric partial differential equations and transitioning to an algebraic equation directly. Also, the joint Finite Hankel-Elzaki transform method was applied in solving a mathematical-physical problem, which is the Hotdog Problem. A steady state which does not depend on time was discussed f
... Show MoreSome nonlinear differential equations with fractional order are evaluated using a novel approach, the Sumudu and Adomian Decomposition Technique (STADM). To get the results of the given model, the Sumudu transformation and iterative technique are employed. The suggested method has an advantage over alternative strategies in that it does not require additional resources or calculations. This approach works well, is easy to use, and yields good results. Besides, the solution graphs are plotted using MATLAB software. Also, the true solution of the fractional Newell-Whitehead equation is shown together with the approximate solutions of STADM. The results showed our approach is a great, reliable, and easy method to deal with specific problems
... Show MoreSteganography art is a technique for hiding information where the unsuspicious cover signal carrying the secret information. Good steganography technique must be includes the important criterions robustness, security, imperceptibility and capacity. The improving each one of these criterions is affects on the others, because of these criterions are overlapped each other. In this work, a good high capacity audio steganography safely method has been proposed based on LSB random replacing of encrypted cover with encrypted message bits at random positions. The research also included a capacity studying for the audio file, speech or music, by safely manner to carrying secret images, so it is difficult for unauthorized persons to suspect
... Show MoreOperated Alandziahih "drift theory" as a science talk in most of the cash and technical studies in the early twentieth century, making him and the sciences, arts and culture both fields of experiences, in an attempt to explore the institutions that theory, a number of laws which took control in the internal structures of those acts, resulting in for those institutions to be actively contribute their ideas to guide the pace on the right track. And thus lay the foundations of this theory, which was a big affair in the early twentieth century and still vigorous pace to this day, particularly their applications in various fields of the arts.Although each type of Arts, both in the composition or the theater or means of communication, took joi
... Show MoreBackground: Differentiation between malignant and benign vertebral compression fracture is often problematic. This is precisely difficult in elderly who are predisposed to benign compression caused by osteoporosis .Establishing correct diagnosis is of great importance in determining the treatment andprognosis.A study was performed to determine which magnetic resonance imaging findings are useful in discrimination between metastatic and acute osteoporotic compression fractures of the spine. Recently MRI is being increasingly used for evaluation of these fractures.Objectives: The aim of this study is to establish the correct diagnosis of malignant and benign compression vertebral fracture by MRI to determine treatment and prognosis.Methods
... Show MoreThin-walled members are increasingly used in structural applications, especially in light structures like in constructions and aircraft structures because of their high strength-to-weight ratio. Perforations are often made on these structures for reducing weight and to facilitate the services and maintenance works like in aircraft wing ribs. This type of structures suffers from buckling phenomena due to its dimensions, and this suffering increases with the presence of holes in it. This study investigated experimentally and numerically the buckling behavior of aluminum alloy 6061-O thin-walled lipped channel beam with specific holes subjected to compression load. A nonlinear finite elements analysis was used to obtain the
... Show MoreBoth the double-differenced and zero-differenced GNSS positioning strategies have been widely used by the geodesists for different geodetic applications which are demanded for reliable and precise positions. A closer inspection of the requirements of these two GNSS positioning techniques, the zero-differenced positioning, which is known as Precise Point Positioning (PPP), has gained a special importance due to three main reasons. Firstly, the effective applications of PPP for geodetic purposes and precise applications depend entirely on the availability of the precise satellite products which consist of precise satellite orbital elements, precise satellite clock corrections, and Earth orientation parameters. Secondly, th
... Show More