Linear programming currently occupies a prominent position in various fields and has wide applications, as its importance lies in being a means of studying the behavior of a large number of systems as well. It is also the simplest and easiest type of models that can be created to address industrial, commercial, military and other dilemmas. Through which to obtain the optimal quantitative value. In this research, we dealt with the post optimality solution, or what is known as sensitivity analysis, using the principle of shadow prices. The scientific solution to any problem is not a complete solution once the optimal solution is reached. Any change in the values of the model constants or what is known as the inputs of the model that will change the problem of linear programming and will affect the optimal solution, and therefore we need a method that helps us to stand on the impact of changing these constants on the optimal solution that has been reached. General concepts about the binary model and some related theories have also been addressed. By analyzing the sensitivity, we relied on real data for a company that transports crude oil and its derivatives. The mathematical model was formulated for it and the optimal solution was reached using the software. Ready-made sop WINQSB and then calculate the shadow price values for the binding constraints, in addition to what
The rapid spread of novel coronavirus disease(COVID19) throughout the world without availablespecific treatment or vaccine necessitates alternativeoptions to contain the disease. Historically, childrenand pregnant women were considered high-riskpopulation of infectious diseases but rarely have beenspotlighted nowadays in the regular COVID-19updates, may be due to low global rates of incidence,morbidity, and mortality. However, complications didoccur in these subjects affected by COVID-19. Weaimed to explore the latest updates ofimmunotherapeutic perspectives of COVID-19patients in general population and some added detailsregarding pediatric and obstetrical practice.Immune system boosting strategy is one of therecently emerging issue
... Show MoreFuzzy numbers are used in various fields such as fuzzy process methods, decision control theory, problems involving decision making, and systematic reasoning. Fuzzy systems, including fuzzy set theory. In this paper, pentagonal fuzzy variables (PFV) are used to formulate linear programming problems (LPP). Here, we will concentrate on an approach to addressing these issues that uses the simplex technique (SM). Linear programming problems (LPP) and linear programming problems (LPP) with pentagonal fuzzy numbers (PFN) are the two basic categories into which we divide these issues. The focus of this paper is to find the optimal solution (OS) for LPP with PFN on the objective function (OF) and right-hand side. New ranking f
... Show MoreMany fuzzy clustering are based on within-cluster scatter with a compactness measure , but in this paper explaining new fuzzy clustering method which depend on within-cluster scatter with a compactness measure and between-cluster scatter with a separation measure called the fuzzy compactness and separation (FCS). The fuzzy linear discriminant analysis (FLDA) based on within-cluster scatter matrix and between-cluster scatter matrix . Then two fuzzy scattering matrices in the objective function assure the compactness between data elements and cluster centers .To test the optimal number of clusters using validation clustering method is discuss .After that an illustrate example are applied.
Human beings are greatly inspired by nature. Nature has the ability to solve very complex problems in its own distinctive way. The problems around us are becoming more and more complex in the real time and at the same instance our mother nature is guiding us to solve these natural problems. Nature gives some of the logical and effective ways to find solutions to these problems. Nature acts as an optimized source for solving the complex problems. Decomposition is a basic strategy in traditional multi-objective optimization. However, it has not yet been widely used in multi-objective evolutionary optimization.
Although computational strategies for taking care of Multi-objective Optimization Problems (MOPs) h
... Show MoreRMK Al-Zaid, AT Al-Musawi, SJ Mohammad
In this paper we present a new method for solving fully fuzzy multi-objective linear programming problems and find the fuzzy optimal solution of it. Numerical examples are provided to illustrate the method.
As of late, humankind has experienced radiation issues either computerized tomography (CT) or X-rays. In this investigation, we endeavor to limit the effect of examination hardware. To do this the medical image is cropping (cut and zoom) then represented the vascular network as a graph such that each contraction as the vertices and the vessel represented as an edges, the area of the coagulation was processed already, in the current search the shortest distance to reach to the place of the blood vessel clot is computed
The parametric programming considered as type of sensitivity analysis. In this research concerning to study the effect of the variations on linear programming model (objective function coefficients and right hand side) on the optimal solution. To determine the parameter (θ) value (-5≤ θ ≤5).Whereas the result، the objective function equal zero and the decision variables are non basic، when the parameter (θ = -5).The objective function value increases when the parameter (θ= 5) and the decision variables are basic، with the except of X24, X34.Whenever the parameter value increase, the objectiv
... Show MoreThis paper develops a fuzzy multi-objective model for solving aggregate production planning problems that contain multiple products and multiple periods in uncertain environments. We seek to minimize total production cost and total labor cost. We adopted a new method that utilizes a Zimmermans approach to determine the tolerance and aspiration levels. The actual performance of an industrial company was used to prove the feasibility of the proposed model. The proposed model shows that the method is useful, generalizable, and can be applied to APP problems with other parameters.
In many applications such as production, planning, the decision maker is important in optimizing an objective function that has fuzzy ratio two functions which can be handed using fuzzy fractional programming problem technique. A special class of optimization technique named fuzzy fractional programming problem is considered in this work when the coefficients of objective function are fuzzy. New ranking function is proposed and used to convert the data of the fuzzy fractional programming problem from fuzzy number to crisp number so that the shortcoming when treating the original fuzzy problem can be avoided. Here a novel ranking function approach of ordinary fuzzy numbers is adopted for ranking of triangular fuzzy numbers with simpler an
... Show More