Preferred Language
Articles
/
8IaaK4YBIXToZYALH30Y
Geological Model of the Khabour Reservoir for Studying the Gas Condensate Blockage Effect on Gas Production, Akkas Gas Field, Western Iraq
...Show More Authors

The Khabour reservoir, Ordovician, Lower Paleozoic, Akkas gas field which is considered one of the main sandstone reservoirs in the west of Iraq. Researchers face difficulties in recognizing sandstone reservoirs since they are virtually always tight and heterogeneous. This paper is associated with the geological modeling of a gas-bearing reservoir that containing condensate appears while production when bottom hole pressure declines below the dew point. By defining the lithology and evaluating the petrophysical parameters of this complicated reservoir, a geological model for the reservoir is being built by using CMG BUILDER software (GEM tool) to create a static model. The petrophysical properties of a reservoir were computed using the notion of hydraulic units, and there are a number of basic steps to building a geological model, beginning with the creation of a single well model and then moving on to the distribution of properties. Depending on the variance in petrophysical parameters, the reservoirs were separated into seven zones. The Ordovician Formation (Khabour Formation) is penetrated by well Akk-1, which is included in the single well geological model to focus on studying the impact of gas condensate on gas production. The prediction of gas condensate wells production will strongly depend on oil banking evaluation and modeling. For this reason, well Akk-1 was chosen to build the model. Upper and lower sandstone units characterized as the most important due to containing of gas. The cost and risk to develop these reservoirs under severe conditions of pressure and temperature highlight the need to be able to confidently predict the recovery of gas and liquid drop-outs from Khabour reservoirs so, it is so necessary to predict the cost of this step in another paper

Scopus Crossref
Publication Date
Tue Feb 28 2023
Journal Name
Iraqi Geological Journal
3D Geological Model for Zubair Reservoir in Abu-Amood Oil Field
...Show More Authors

The Zubair reservoir in the Abu-Amood field is considered a shaly sand reservoir in the south of Iraq. The geological model is created for identifying the facies, distributing the petrophysical properties and estimating the volume of hydrocarbon in place. When the data processing by Interactive Petrophysics (IP) software is completed and estimated the permeability reservoir by using the hydraulic unit method then, three main steps are applied to build the geological model, begins with creating a structural, facies and property models. five zones the reservoirs were divided (three reservoir units and two cap rocks) depending on the variation of petrophysical properties (porosity and permeability) that results from IP software interpr

... Show More
View Publication Preview PDF
Scopus (4)
Scopus Crossref
Publication Date
Mon Jul 01 2019
Journal Name
Iop Conference Series: Materials Science And Engineering
Wells location effect on the underground gas storage in UM ERadhuma Formation-Ratawie oil field
...Show More Authors

View Publication
Scopus Crossref
Publication Date
Sat Dec 30 2023
Journal Name
Iraqi Journal Of Chemical And Petroleum Engineering
Selecting Optimum Dimensions for a Three-Phase Horizontal Smart Separator for Khor Mor Gas-Condensate Processing Plant
...Show More Authors

      The Khor Mor gas-condensate processing plant in Iraq is currently facing operational challenges due to foaming issues in the sweetening tower caused by high-soluble hydrocarbon liquids entering the tower. The root cause of the problem could be liquid carry-over as the separation vessels within the plant fail to remove liquid droplets from the gas phase. This study employs Aspen HYSYS v.11 software to investigate the performance of the industrial three-phase horizontal separator, Bravo #2, located upstream of the Khor Mor sweetening tower, under both current and future operational conditions. The simulation results, regarding the size distribution of liquid droplets in the gas product and the efficiency gas/liquid separation, r

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Tue Jan 01 2019
Journal Name
Proceedings Of The 17th Laccei International Multi-conference For Engineering, Education, And Technology: “industry, Innovation, And Infrastructure For Sustainable Cities And Communities”
Type Curve Techniques for Hydraulically Fractured Wells in Tight Gas Reservoir
...Show More Authors

View Publication
Scopus Crossref
Publication Date
Mon Aug 10 2020
Journal Name
Journal Of Petroleum Exploration And Production Technology
Geomechanical modelling and two-way coupling simulation for carbonate gas reservoir
...Show More Authors
Abstract<p>Geomechanical modelling and simulation are introduced to accurately determine the combined effects of hydrocarbon production and changes in rock properties due to geomechanical effects. The reservoir geomechanical model is concerned with stress-related issues and rock failure in compression, shear, and tension induced by reservoir pore pressure changes due to reservoir depletion. In this paper, a rock mechanical model is constructed in geomechanical mode, and reservoir geomechanics simulations are run for a carbonate gas reservoir. The study begins with assessment of the data, construction of 1D rock mechanical models along the well trajectory, the generation of a 3D mechanical earth model, and runni</p> ... Show More
View Publication
Scopus (11)
Crossref (7)
Scopus Clarivate Crossref
Publication Date
Mon Sep 14 2015
Journal Name
Spe North Africa Technical Conference And Exhibition
Feasibility of Gas Lift to Increase Oil Production in an Iraqi Giant Oil Field
...Show More Authors
Abstract<p>Gas lift is one of the artificial lift techniques which it is frequently implemented to raise oil production. Conventionally, the oil wells produce depending on the energy of reservoir pressure and solution gas which declines due to continuous production. Therefore, many oil wells after a certain production time become unable to lift oil to the surface. Thus, the continuity of production requires implementation of gas lift which works to decrease the average fluid density in the tubing by injection gas through the annulus into the tubing. This paper aims to get maximum oil production of an Iraqi giant oil field at optimum injected gas rate. The field is located in south of Iraq and in</p> ... Show More
Scopus (8)
Crossref (5)
Scopus Crossref
Publication Date
Sat Jan 13 2018
Journal Name
Journal Of Engineering
Comparison Between ESP and Gas Lift in Buzurgan Oil field/Iraq
...Show More Authors

Buzurgan oil Field which is located in south of Iraq has been producing oil for five decades that caused production to drop in many oil wells. This paper provides a technical and economical comparison between the ESP and gas lift in one oil well (Bu-16) to help enhancing production and maximize revenue. Prosper software was used to build, match and design the artificial lift method for the selected well, also to predict the well behavior at different water cut values and its effect on artificial lift method efficiency. The validity of software model was confirmed by matching, where the error difference value between actual and calculated data was (-1.77%).

The ESP results showed the durability of ESP regarding th

... Show More
View Publication Preview PDF
Publication Date
Sun Nov 15 2020
Journal Name
Journal Of Petroleum Research And Studies
Reservoir Model and Production Strategy of Mishrif Reservoir-Nasryia Oil Field Southern Iraq
...Show More Authors

Nasryia oil field is located about 38 Km to the north-west of Nasryia city. The field was discovered in 1975 after doing seismic by Iraqi national oil company. Mishrif formation is a carbonate rock (Limestone and Dolomite) and its thickness reach to 170m. The main reservoir is the lower Mishrif (MB) layer which has medium permeability (3.5-100) md and good porosity (10-25) %. Form well logging interpretation, it has been confirmed the rock type of Mishrif formation as carbonate rock. A ten meter shale layer is separating the MA from MB layer. Environmental corrections had been applied on well logs to use the corrected one in the analysis. The combination of Neutron-Density porosity has been chosen for interpretation as it is c

... Show More
View Publication
Crossref (1)
Crossref
Publication Date
Fri Sep 30 2016
Journal Name
Iraqi Journal Of Chemical And Petroleum Engineering
Geological Model of Khasib Reservoir- Central Area/East Baghdad Field
...Show More Authors

The Geological modeling has been constructed by using Petrel E&P software to incorporate data, for improved Three-dimensional models of porosity model, water saturation, permeability estimated from core data, well log interpretation, and fault analysis modeling.

Three-dimensional geological models attributed with physical properties constructed from primary geological data. The reservoir contains a huge hydrocarbon accumulation, a unique geological model characterization with faults, high heterogeneity, and a very complex field in nature.

The results of this study show that the Three-dimensional geological model of Khasib reservoir, to build the reservoir model starting with evaluation of reservoir to interpretation o

... Show More
View Publication Preview PDF
Publication Date
Wed Sep 30 2020
Journal Name
Iraqi Geological Journal
RADON GAS AND EFFECTIVE DOSE IN GROUNDWATER IN ABU- JIR VILLAGE IN ANBAR, WESTERN IRAQ
...Show More Authors

In the present study, radon gas concentration in the shallow groundwater samples of the Abu-Jir region in Anbar governorate was measured by using Rad-7 detector. The highest radon gas level in the samples is up to 9.3 Bq/L, while the lowest level is 2.1 Bq/L, with an average of 6.44±1.8 Bq/L. The annual effective dose is varied from 33.945 μSv/y to 7.66 μSv/y, with an average of 0.145±0.06 μSv/y. Consequently, the radon level in the groundwater studied is lower than the standard recommended value (11 Bq/L) reported by the United States Environmental Protection Agency (USEPA). The potential source of radon is uranium-rich hydrocarbons that are leakage to the surface along the Abu-Jir Fault. This research did not indicate any ris

... Show More
View Publication Preview PDF
Crossref (2)
Crossref