The research presents the reliability. It is defined as the probability of accomplishing any part of the system within a specified time and under the same circumstances. On the theoretical side, the reliability, the reliability function, and the cumulative function of failure are studied within the one-parameter Raleigh distribution. This research aims to discover many factors that are missed the reliability evaluation which causes constant interruptions of the machines in addition to the problems of data. The problem of the research is that there are many methods for estimating the reliability function but no one has suitable qualifications for most of these methods in the data such as the presence of anomalous values or extreme values or the appropriate distribution of these data is unknown. Therefore, the data need methods through which can be dealt with this problem. Two of the estimation methods have been used: the robust (estimator M) method and the nonparametric Kernel method. These estimation methods are derived to arrive at the formulas of their capabilities. A comparison of these estimations is made using the simulation method as it is implemented. Simulation experiments using different sample sizes and each experiment is repeated (1000) times to achieve the objective. The results are compared by using one of the most important statistical measures which is the mean of error squares (MSE). The best estimation method has been reached is the robust (M estimator) method. It has been shown that the estimation of the reliability function gradually decreases with time, and this is identical to the properties of this function.
Abstract
Suffering the human because of pressure normal life of exposure to several types of heart disease as a result of due to different factors. Therefore, and in order to find out the case of a death whether or not, are to be modeled using binary logistic regression model
In this research used, one of the most important models of nonlinear regression models extensive use in the modeling of applications statistical, in terms of heart disease which is the binary logistic regression model. and then estimating the parameters of this model using the statistical estimation methods, another problem will be appears in estimating its parameters, as well as when the numbe
... Show MoreIn this paper, we investigate two stress-strength models (Bounded and Series) in systems reliability based on Generalized Inverse Rayleigh distribution. To obtain some estimates of shrinkage estimators, Bayesian methods under informative and non-informative assumptions are used. For comparison of the presented methods, Monte Carlo simulations based on the Mean squared Error criteria are applied.
Curing of concrete is the maintenance of a satisfactory moisture content and temperature for a
period of time immediately following placing so the desired properties are developed. Accelerated
curing is advantages where early strength gain in concrete is important. The expose of concrete
specimens to the accelerated curing conditions which permit the specimens to develop a significant
portion of their ultimate strength within a period of time (1-2 days), depends on the method of the
curing cycle.Three accelerated curing test methods are adopted in this study. These are warm water,
autogenous and proposed test methods. The results of this study has shown good correlation
between the accelerated strength especially for
Researchers need to understand the differences between parametric and nonparametric regression models and how they work with available information about the relationship between response and explanatory variables and the distribution of random errors. This paper proposes a new nonparametric regression function for the kernel and employs it with the Nadaraya-Watson kernel estimator method and the Gaussian kernel function. The proposed kernel function (AMS) is then compared to the Gaussian kernel and the traditional parametric method, the ordinary least squares method (OLS). The objective of this study is to examine the effectiveness of nonparametric regression and identify the best-performing model when employing the Nadaraya-Watson
... Show MoreBecause of the experience of the mixture problem of high correlation and the existence of linear MultiCollinearity between the explanatory variables, because of the constraint of the unit and the interactions between them in the model, which increases the existence of links between the explanatory variables and this is illustrated by the variance inflation vector (VIF), L-Pseudo component to reduce the bond between the components of the mixture.
To estimate the parameters of the mixture model, we used in our research the use of methods that increase bias and reduce variance, such as the Ridge Regression Method and the Least Absolute Shrinkage and Selection Operator (LASSO) method a
... Show MoreIn this work, a new formula of intensity distribution in image plane of elliptical object was founded (Elliptical spread function), by using optical system including circular aperture. The Gauss quadrature method of numerical integral was used for calculating equation's integrals. Curves are shown for system having focal error and intensity distribution in focal axis.
A computational investigation has been carried out to describe synthesis optimization procedure of magnetic lenses. The research is concentrated on the determination of the inverse design of the symmetrical double polepiece magnetic lenses whose magnetic field distribution is already defined. Magnetic lenses field model well known in electron optics have been used as the axial magnetic field distribution. This field has been studied when the halfwidth is variable and the maximum magnetic flux density is kept constant. The importance of this research lies in the possibility of using the present synthesis optimization procedure for finding the polepieces design of symmetrical double polepiece magnetic lenses which have the best proje
... Show MoreIn this article, we developed a new loss function, as the simplification of linear exponential loss function (LINEX) by weighting LINEX function. We derive a scale parameter, reliability and the hazard functions in accordance with upper record values of the Lomax distribution (LD). To study a small sample behavior performance of the proposed loss function using a Monte Carlo simulation, we make a comparison among maximum likelihood estimator, Bayesian estimator by means of LINEX loss function and Bayesian estimator using square error loss (SE) function. The consequences have shown that a modified method is the finest for valuing a scale parameter, reliability and hazard functions.
The purpose of this project is to build a scientific base and computational programs in an accelerator design work. The transfer of group of laws in alinear accelerator cavity to computer codes written in Fortran power station language is inorder to get a numerical calculation of an electromagnetic field generated in the cavities of the linear accelerator. The program in put contains mainly the following, the geometrical cavity constant, and the triangular finite element method high – order polynomial. The out put contains vertical and horizontal components of the electrical field together with the electrical and the magnetic field intensity.