Preferred Language
Articles
/
7hiURpcBVTCNdQwCM5ZM
Reservoir permeability prediction based artificial intelligence techniques
...Show More Authors

   Predicting permeability is a cornerstone of petroleum reservoir engineering, playing a vital role in optimizing hydrocarbon recovery strategies. This paper explores the application of neural networks to predict permeability in oil reservoirs, underscoring their growing importance in addressing traditional prediction challenges. Conventional techniques often struggle with the complexities of subsurface conditions, making innovative approaches essential. Neural networks, with their ability to uncover complicated patterns within large datasets, emerge as a powerful alternative. The Quanti-Elan model was used in this study to combine several well logs for mineral volumes, porosity and water saturation estimation. This model goes beyond simply predicting lithology to provide a detailed quantification of primary minerals (e.g., calcite and dolomite) as well as secondary ones (e.g., shale and anhydrite). The results show important lithological contrast with the high-porosity layers correlating to possible reservoir areas. The richness of Quanti-Elan's interpretations goes beyond what log analysis alone can reveal. The methodology is described in-depth, discussing the approaches used to train neural networks (e.g., data processing, network architecture). A case study where output of neural network predictions of permeability in a particular oil well are compared with core measurements. The results indicate an exceptional closeness between predicted and actual values, further emphasizing the power of this approach. An extrapolated neural network model using lithology (dolomite and limestone) and porosity as input emphasizes the close match between predicted vs. observed carbonate reservoir permeability. This case study demonstrated the ability of neural networks to accurately characterize and predict permeability in complex carbonate systems. Therefore, the results confirmed that neural networks are a reliable and transformative technology tool for oil reservoirs management, which can help to make future predictive methodologies more efficient hydrocarbon recovery operations.

Crossref
View Publication
Publication Date
Sun Jul 29 2018
Journal Name
Science International
THE EFFECT OF QUR'ANIC VERSES STRATEGY ON ACHIEVING SCIENCE AND SYSTEMIC INTELLIGENCE FOR SECOND GRADE STUDENTS.
...Show More Authors

The objective of the research is to uncover the effect of the strategy of Quranic verses in the collection of science and systemic intelligence for second-grade students. The research sample consisted of (48) students of second grade students in the middle of Al Rasheed Boys School of the second Karkh Directorate, Distribution in the two divisions, Division of (b) and experimental group that studied strategy of Quranic verses, and the Division (a) control group which studied the regular way, and results indicated a statistically significant differences for the experimental group students studied using the strategy Verses in systemic intelligence collection.

Preview PDF
Publication Date
Fri Oct 19 2018
Journal Name
Journal Of Economics And Administrative Sciences
The impact of creative thinking in cultural intelligence Field research on a sample of medical specialists
...Show More Authors

Basic Orientation  and search path in determining the impact of creative thinking in cultural intelligence field research on the doctors competence, as is a theme of creative thinking great importance in spite of being a old , but his role at the individual level and / or organizational a sustainable effect toward developing a fact uncommon , any sense that one of the pillars of modernity and provide a unique future, as is the competitive weapon of the organizations in an environment dubbed fundamental change and provide all that is unfamiliar, and in the center of the field of research and objective measurement of creative thinking on doctors specialists at the construction of a state of the preference and

... Show More
View Publication Preview PDF
Crossref
Publication Date
Wed Nov 01 2023
Journal Name
Journal Of Modern Project Management
THE IMPACT OF STRATEGIC INTELLIGENCE ON ORGANIZATIONAL PERFORMANCE: A TEXTILE SECTOR PERSPECTIVE OF A DEVELOPING ECONOMY
...Show More Authors

In today’s competitive environment, organizational efficiency and sustained growth are crucial for survival. The performance of an organization is intricately connected to strategic planning, prompting firms to gather and leverage competitive information for a competitive advantage. Senior managers, recognizing this, initiate actions accordingly. This study aims to investigate the relationship between foresight, vision, strategic partnerships, motivation, system thinking, and organizational performance. Data, gathered through a self-administered questionnaire from various textile units, were analysed using structural equation modelling (SEM). The findings indicate that sub-constructs of strategic intelligence positively impact organizatio

... Show More
Publication Date
Sat Oct 01 2016
Journal Name
2016 6th International Conference On Information Communication And Management (icicm)
Enhancing case-based reasoning retrieval using classification based on associations
...Show More Authors

View Publication
Scopus (4)
Crossref (2)
Scopus Crossref
Publication Date
Mon Sep 01 2025
Journal Name
Journal Of Engineering
Petrophysical Evaluation by Integrating AI and HFU Methods. A Case Study of the Mishrif Reservoir in Southern Iraq
...Show More Authors

Reservoir quality assessment is important for detecting hydrocarbon-bearing zones and guiding future enhancement strategies. This study presents a detailed petrophysical evaluation of the Mishrif Formation in the Buzurgan Oilfield, which was selected due to its strategic value through its significant remaining reserves which making it an ideal candidate for advanced evaluation techniques. This study aims for shale content, porosity, permeability, water saturation, net to gross, and lithology determination. Well log and core data were used together to establish accurate property estimations. Permeability prediction through conventional methods, like core permeability-porosity correlations, was highly dispersive due to the heterogenei

... Show More
View Publication
Crossref
Publication Date
Tue Dec 31 2019
Journal Name
Journal Of Engineering
A High Resolution 3D Geomodel for Giant Carbonate Reservoir- A Field Case Study from an Iraqi Oil Field
...Show More Authors

Constructing a fine 3D geomodel for complex giant reservoir is a crucial task for hydrocarbon volume assessment and guiding for optimal development. The case under study is Mishrif reservoir of Halfaya oil field, which is an Iraqi giant carbonate reservoir. Mishrif mainly consists of limestone rocks which belong to Late Cenomanian age. The average gross thickness of formation is about 400m. In this paper, a high-resolution 3D geological model has been built using Petrel software that can be utilized as input for dynamic simulation. The model is constructed based on geological, geophysical, pertophysical and engineering data from about 60 available wells to characterize the structural, stratigraphic, and properties distribution along

... Show More
Crossref (2)
Crossref
Publication Date
Tue Dec 31 2019
Journal Name
Journal Of Engineering
A High Resolution 3D Geomodel for Giant Carbonate Reservoir- A Field Case Study from an Iraqi Oil Field
...Show More Authors

Constructing a fine 3D geomodel for complex giant reservoir is a crucial task for hydrocarbon volume assessment and guiding for optimal development. The case under study is Mishrif reservoir of Halfaya oil field, which is an Iraqi giant carbonate reservoir. Mishrif mainly consists of limestone rocks which belong to Late Cenomanian age. The average gross thickness of formation is about 400m. In this paper, a high-resolution 3D geological model has been built using Petrel software that can be utilized as input for dynamic simulation. The model is constructed based on geological, geophysical, pertophysical and engineering data from about 60 available wells to characterize the structural, stratigraphic, and properties distri

... Show More
View Publication Preview PDF
Crossref (2)
Crossref
Publication Date
Tue Dec 30 2025
Journal Name
Iraqi Journal Of Chemical And Petroleum Engineering
Optimum design and performance analysis of a gas lift system in the carbonate reservoir of Ahdab oil field
...Show More Authors

   Gas lift is one of the most important artificial lift methods for increasing oil production, as wells often require this method after the reservoir's energy has decreased. In this research, an optimal gas lift system is designed for five horizontal wells in the Ahdab oil field, which suffers from low production. At the same time, water cut in some of these wells reaches 66%, while the productivity index is low in others, which makes the challenges clear, and a deep analysis is needed to find an optimal system. The Pipesim program is used to design the optimal gas lift system, which contains features that facilitate the implementation of the appropriate design and provide the ability to analyze and determine the optimal design v

... Show More
View Publication Preview PDF
Crossref
Publication Date
Fri Sep 30 2022
Journal Name
Iraqi Geological Journal
Estimation of Initial Oil in Place for Buzurgan Oil Field by Using Volumetric Method and Reservoir Simulation Method
...Show More Authors

The estimation of the initial oil in place is a crucial topic in the period of exploration, appraisal, and development of the reservoir. In the current work, two conventional methods were used to determine the Initial Oil in Place. These two methods are a volumetric method and a reservoir simulation method. Moreover, each method requires a type of data whereet al the volumetric method depends on geological, core, well log and petrophysical properties data while the reservoir simulation method also needs capillary pressure versus water saturation, fluid production and static pressure data for all active wells at the Mishrif reservoir. The petrophysical properties for the studied reservoir is calculated using neural network technique

... Show More
View Publication
Scopus (8)
Scopus Crossref
Publication Date
Wed Mar 10 2021
Journal Name
Baghdad Science Journal
Compression-based Data Reduction Technique for IoT Sensor Networks
...Show More Authors

Energy savings are very common in IoT sensor networks because IoT sensor nodes operate with their own limited battery. The data transmission in the IoT sensor nodes is very costly and consume much of the energy while the energy usage for data processing is considerably lower. There are several energy-saving strategies and principles, mainly dedicated to reducing the transmission of data. Therefore, with minimizing data transfers in IoT sensor networks, can conserve a considerable amount of energy. In this research, a Compression-Based Data Reduction (CBDR) technique was suggested which works in the level of IoT sensor nodes. The CBDR includes two stages of compression, a lossy SAX Quantization stage which reduces the dynamic range of the

... Show More
View Publication Preview PDF
Scopus (41)
Crossref (28)
Scopus Clarivate Crossref