Preferred Language
Articles
/
7hiURpcBVTCNdQwCM5ZM
Reservoir permeability prediction based artificial intelligence techniques
...Show More Authors

   Predicting permeability is a cornerstone of petroleum reservoir engineering, playing a vital role in optimizing hydrocarbon recovery strategies. This paper explores the application of neural networks to predict permeability in oil reservoirs, underscoring their growing importance in addressing traditional prediction challenges. Conventional techniques often struggle with the complexities of subsurface conditions, making innovative approaches essential. Neural networks, with their ability to uncover complicated patterns within large datasets, emerge as a powerful alternative. The Quanti-Elan model was used in this study to combine several well logs for mineral volumes, porosity and water saturation estimation. This model goes beyond simply predicting lithology to provide a detailed quantification of primary minerals (e.g., calcite and dolomite) as well as secondary ones (e.g., shale and anhydrite). The results show important lithological contrast with the high-porosity layers correlating to possible reservoir areas. The richness of Quanti-Elan's interpretations goes beyond what log analysis alone can reveal. The methodology is described in-depth, discussing the approaches used to train neural networks (e.g., data processing, network architecture). A case study where output of neural network predictions of permeability in a particular oil well are compared with core measurements. The results indicate an exceptional closeness between predicted and actual values, further emphasizing the power of this approach. An extrapolated neural network model using lithology (dolomite and limestone) and porosity as input emphasizes the close match between predicted vs. observed carbonate reservoir permeability. This case study demonstrated the ability of neural networks to accurately characterize and predict permeability in complex carbonate systems. Therefore, the results confirmed that neural networks are a reliable and transformative technology tool for oil reservoirs management, which can help to make future predictive methodologies more efficient hydrocarbon recovery operations.

Crossref
View Publication
Publication Date
Sun Mar 15 2020
Journal Name
Al-academy
Attitudes of Teachers of Art Education towards the Use of Visual Intelligence in Teaching: تحرير جاسم كاطع
...Show More Authors

     The scientific and technological developments and their practical applications in all fields of life in general and in the education field in specific have led to the emergence of variables in the educational structure, teaching methods and in education in their modern form which is consistent in its entirety with    the spirit of the age. We today live the age of knowledge increase full of wide ranging scientific and technological developments. Thus life demands human capabilities of a special kind able to develop and innovate. Here the increasing significance emerges for taking care of the human powers through educational systems much different from those current traditional systems.  System

... Show More
View Publication Preview PDF
Crossref
Publication Date
Thu Oct 01 2015
Journal Name
Journal Of Economics And Administrative Sciences
The Impact of Strategic Intelligence In Decision Making Styles An Analytical research in the Construction& Housing ministry
...Show More Authors

            This research aims to explore the impact of strategic  intelligence by his dimensions (Foresight , system thinking, vision, motivation and partnership) on decision making styles which represented by ( rational, intuitive, dependent, Spontaneous and  Avoidant style) for a sample of the administrative leaders in the center of  Reconstruction &Housing Ministry and Some its formations which are companies of (Sa'ad, Al Mansour, al Farouq, Assyria, al-Mu'tasim, al- Rasheed, and Public Authority for Housing).  So to achieve the  research objectives and to test hypotheses, it has been relying

... Show More
View Publication Preview PDF
Crossref
Publication Date
Wed Mar 29 2023
Journal Name
Iraqi Journal Of Chemical And Petroleum Engineering
Effect of Heterogeneity on Capillary Pressure and Relative Permeability Curves in Carbonate Reservoirs. A Case Study for Mishrif Formation in West Qurna/1 Oilfield, Iraq
...Show More Authors

The special core analysis tests were accomplished on a set of core plugs for Mishrif Formation (mA, mB1, and mB2cde/mC units) in West Qurna/1 oilfield, southern Iraq. Oil relative permeability (Kro) data and the Corey-type fit of the data as functions of the brine saturation at the core outlet face for individual samples in the water-oil imbibition process to estimate relative permeability measurements by the centrifuge method were utilized. Identical correlations for oil and water relative permeabilities were extracted by steady-state and unsteady-state methods. For the mA samples, the gas-water capillary pressure curves were within a narrow range (almost identical) indicating that mA is a homogeneous unit. Kro curves for three mB2

... Show More
Crossref (5)
Crossref
Publication Date
Wed Nov 13 2019
Journal Name
International Journal Of Research In Pharmaceutical Sciences
Prediction of maternal diabetes and adverse neonatal outcome in normotensive pregnancy using serum uric acid
...Show More Authors

Diabetes mellitus, with adverse neonatal events are challenging issues to all obstetricians and pediatricians, where uric acid could play a vital role. We aimed to assess the relationship and prognostic benefits of serum uric acid measured at about 20 weeks’ gestation in normotensive pregnancy, with subsequent maternal diabetes, and neonatal complications. All singleton normotensive pregnant women with normal blood glucose, serum creatinine, and weight before pregnancy, whom attended Medical City Hospital, Department of Obstetrics and Gynecology in Baghdad, were involved and regarded as the case group, on the condition that their serum uric acid measured at 20 weeks’ gestation > 3 mg/dl, but if ≤ 3 mg/dl, they would be regi

... Show More
View Publication Preview PDF
Scopus (8)
Crossref (5)
Scopus Crossref
Publication Date
Fri Jan 01 2021
Journal Name
Ieee Access
Total Dissolved Salt Prediction Using Neurocomputing Models: Case Study of Gypsum Soil Within Iraq Region
...Show More Authors

View Publication
Scopus (13)
Crossref (14)
Scopus Clarivate Crossref
Publication Date
Mon Jun 05 2023
Journal Name
Journal Of Engineering
Prediction of Compressive Strength of Reinforced Concrete Structural Elements by Using Combined Non-Destructive Tests
...Show More Authors

This research is devoted to investigate relationship between both Ultrasonic Pulse Velocity and Rebound Number (Hammer Test) with cube compressive strength and also to study the effect of steel reinforcement on these relationships.
A study was carried out on 32 scale model reinforced concrete elements. Non destructive testing campaign (mainly ultrasonic and rebound hammer tests) made on the same elements. About 72 concrete cubes (15 X 15 X15) were taken from the concrete mixes to check the compressive strength.. Data analyzed.Include the possible correlations between non destructive testing (NDT) and compressive strength (DT) Statistical approach is used for this purpose. A new relationships obtained from correlations results is give

... Show More
View Publication Preview PDF
Crossref (3)
Crossref
Publication Date
Sat Jun 28 2014
Journal Name
Iraqi Postgraduate Medical Journal
Comparism Between Transvaginal Cervical Length Measurement and Digital Examination in Prediction of Imminent preterm Delivery
...Show More Authors

BACKGROUND: Preterm labour is a major cause of perinatal morbidity and mortality, so it is important to predict preterm delivery using the clinical examination of the cervix and uterine contraction frequency. New markers for the prediction of preterm birth have been developed such as transvaginal ultrasound measurement of cervical length as this method is widely available. OBJECTIVE: To determine, whether transvaginal cervical length measurement predicts imminent preterm delivery better than digital cervical length measurement in women presented with preterm labour and intact membranes. PATIENTS AND METHODS: Two hundred women presented with preterm labour between 24 and 36+6 weeks of gestation were included in this study. All women subjecte

... Show More
View Publication
Publication Date
Mon Oct 08 2018
Journal Name
Bulletin Of The Iraq Natural History Museum (p-issn: 1017-8678 , E-issn: 2311-9799)
TOTAL ORGANIC CARBON (TOC) PREDICTION FROM RESISTIVITY AND POROSITY LOGS: A CASE STUDY FROM IRAQ
...Show More Authors

     The open hole well log data (Resistivity, Sonic, and Gamma Ray) of well X in Euphrates subzone within the Mesopotamian basin are applied to detect the total organic carbon (TOC) of Zubair Formation in the south part of Iraq. The mathematical interpretation of the logs parameters helped in detecting the TOC and source rock productivity. As well, the quantitative interpretation of the logs data leads to assigning to the organic content and source rock intervals identification. The reactions of logs in relation to the increasing of TOC can be detected through logs parameters. By this way, the TOC can be predicted with an increase in gamma-ray, sonic, neutron, and resistivity, as well as a decrease in the density log

... Show More
View Publication Preview PDF
Scopus (12)
Crossref (4)
Scopus Crossref
Publication Date
Fri Mar 29 2024
Journal Name
Iraqi Journal Of Science
Evaluating the Performance and Behavior of CNN, LSTM, and GRU for Classification and Prediction Tasks
...Show More Authors

     Deep learning (DL) plays a significant role in several tasks, especially classification and prediction. Classification tasks can be efficiently achieved via convolutional neural networks (CNN) with a huge dataset, while recurrent neural networks (RNN) can perform prediction tasks due to their ability to remember time series data. In this paper, three models have been proposed to certify the evaluation track for classification and prediction tasks associated with four datasets (two for each task). These models are CNN and RNN, which include two models (Long Short Term Memory (LSTM)) and GRU (Gated Recurrent Unit). Each model is employed to work consequently over the two mentioned tasks to draw a road map of deep learning mod

... Show More
View Publication
Scopus (4)
Crossref (2)
Scopus Crossref
Publication Date
Tue Jan 01 2019
Journal Name
Indian Journal Of Public Health Research & Development
Effects of Artificial Aging on Some Properties of Room-Temperature-Vulcanized Maxillofacial Silicone Elastomer Modified by Yttrium Oxide Nanoparticles
...Show More Authors

Abstract Background: The daily usage of maxillofacial prostheses causes them to mechanically deteriorate with time. This study was aimed to evaluate the reinforcement of VST50F maxillofacial silicone by using yttrium oxide (Y2O3) nanoparticles (NPs) to resist aging and mechanical deterioration. Materials and Method: Y2O3 NPs (30–45nm) were loaded into VST50F maxillofacial silicone in two weight percentages (1 and 1.5 wt%), which were predetermined in a pilot study as the best rates for improving tear strength with minimum increase in hardness values. A total of 120 specimens were prepared and divided into the control and experimental groups (with 1 and 1.5 wt% Y2O3 addition). Each group included 40 specimens, 10 specimens for each paramet

... Show More
View Publication
Scopus (2)
Crossref (3)
Scopus Crossref