Preferred Language
Articles
/
7hiURpcBVTCNdQwCM5ZM
Reservoir permeability prediction based artificial intelligence techniques
...Show More Authors

   Predicting permeability is a cornerstone of petroleum reservoir engineering, playing a vital role in optimizing hydrocarbon recovery strategies. This paper explores the application of neural networks to predict permeability in oil reservoirs, underscoring their growing importance in addressing traditional prediction challenges. Conventional techniques often struggle with the complexities of subsurface conditions, making innovative approaches essential. Neural networks, with their ability to uncover complicated patterns within large datasets, emerge as a powerful alternative. The Quanti-Elan model was used in this study to combine several well logs for mineral volumes, porosity and water saturation estimation. This model goes beyond simply predicting lithology to provide a detailed quantification of primary minerals (e.g., calcite and dolomite) as well as secondary ones (e.g., shale and anhydrite). The results show important lithological contrast with the high-porosity layers correlating to possible reservoir areas. The richness of Quanti-Elan's interpretations goes beyond what log analysis alone can reveal. The methodology is described in-depth, discussing the approaches used to train neural networks (e.g., data processing, network architecture). A case study where output of neural network predictions of permeability in a particular oil well are compared with core measurements. The results indicate an exceptional closeness between predicted and actual values, further emphasizing the power of this approach. An extrapolated neural network model using lithology (dolomite and limestone) and porosity as input emphasizes the close match between predicted vs. observed carbonate reservoir permeability. This case study demonstrated the ability of neural networks to accurately characterize and predict permeability in complex carbonate systems. Therefore, the results confirmed that neural networks are a reliable and transformative technology tool for oil reservoirs management, which can help to make future predictive methodologies more efficient hydrocarbon recovery operations.

Crossref
View Publication
Publication Date
Thu May 30 2024
Journal Name
Iraqi Journal Of Science
A Review Study on Forgery and Tamper Detection Techniques in Digital Images
...Show More Authors

Digital tampering identification, which detects picture modification, is a significant area of image analysis studies. This area has grown with time with exceptional precision employing machine learning and deep learning-based strategies during the last five years. Synthesis and reinforcement-based learning techniques must now evolve to keep with the research. However, before doing any experimentation, a scientist must first comprehend the current state of the art in that domain. Diverse paths, associated outcomes, and analysis lay the groundwork for successful experimentation and superior results. Before starting with experiments, universal image forensics approaches must be thoroughly researched. As a result, this review of variou

... Show More
View Publication
Scopus Crossref
Publication Date
Sat Oct 06 2012
Journal Name
Journal Of Engineering
Prediction of Smear Effect on the Bearing Capacity of Driven Piles
...Show More Authors

Publication Date
Fri Nov 30 2018
Journal Name
Iop Conference Series: Materials Science And Engineering
Damage pattern scope prediction for well point dewatering on building foundations
...Show More Authors

View Publication Preview PDF
Scopus (1)
Crossref (1)
Scopus Clarivate Crossref
Publication Date
Sun Oct 01 2023
Journal Name
Journal Of Applied Hematology
D-dimer and Ferritin Levels in Prediction of COVID-19 Severity
...Show More Authors
Abstract<sec> <title>BACKGROUND:

The most common cause of upper respiratory tract infection is coronavirus, which has a crown appearance due to the existence of spikes on its envelope. D-dimer levels in the plasma have been considered a prognostic factor for COVID-19 patients.

AIM OF THE STUDY:

The aim of the study is to demonstrate the role of COVID-19 on coagulation parameters D-dimer and ferritin with their association with COVID-19 severity and disease progression in a single-center study.

... Show More
View Publication
Scopus Crossref
Publication Date
Sun Jan 01 2023
Journal Name
Journal Of Intelligent Systems
Optimizing genetic prediction: Define-by-run DL approach in DNA sequencing
...Show More Authors

Abstract: The utility of DNA sequencing in diagnosing and prognosis of diseases is vital for assessing the risk of genetic disorders, particularly for asymptomatic individuals with a genetic predisposition. Such diagnostic approaches are integral in guiding health and lifestyle decisions and preparing families with the necessary foreknowledge to anticipate potential genetic abnormalities. The present study explores implementing a define-by-run deep learning (DL) model optimized using the Tree-structured Parzen estimator algorithm to enhance the precision of genetic diagnostic tools. Unlike conventional models, the define-by-run model bolsters accuracy through dynamic adaptation to data during the learning process and iterative optimization

... Show More
View Publication
Scopus (2)
Scopus Clarivate Crossref
Publication Date
Mon Jul 31 2023
Journal Name
International Journal Of Sustainable Development And Planning
Monitoring and Prediction Functional Change of Land Uses Toward Urban Sustainability
...Show More Authors

Urban land uses are in a dynamic state that varies over time, the city of Karbala in Iraq has experienced functional changes over the past 100 years, as the city is characterized by the presence of significant tourist and socio-economic activity represented by religious tourism, and it occur due to various reasons such as urbanization. The purpose of this study is to apply a Markov model to analyze and predict the behavior of transforming the use of land in Karbala city over time. This can include the conversion of agricultural land, or other areas into residential, commercial, industrial land uses. The process of urbanization is typically driven by population growth, economic development, based on a set of probabilities and transitions bet

... Show More
View Publication
Scopus (5)
Crossref (1)
Scopus Crossref
Publication Date
Tue Jun 01 2021
Journal Name
Al-khwarizmi Engineering Journal
Prediction of Surface Roughness after Turning of Duplex Stainless Steel (DSS)
...Show More Authors

Feed Forward Back Propagation artificial neural network (ANN) model utilizing the MATLAB Neural Network Toolbox is designed for the prediction of surface roughness of Duplex Stainless Steel during orthogonal turning with uncoated carbide insert tool. Turning experiments were performed at various process conditions (feed rate, cutting speed, and cutting depth). Utilizing the Taguchi experimental design method, an optimum ANN architecture with the Levenberg-Marquardt training algorithm was obtained. Parametric research was performed with the optimized ANN architecture to report the impact of every turning parameter on the roughness of the surface. The results suggested that machining at a cutting speed of 355 rpm with a feed rate of 0.07 m

... Show More
View Publication Preview PDF
Scopus (1)
Scopus Crossref
Publication Date
Sat Jan 01 2022
Journal Name
Journal Of Applied Engineering Science
Rutting prediction of hot mix asphalt mixtures reinforced by ceramic fibers
...Show More Authors

One of the most severe problems with flexible asphalt pavements is permanent deformation in the form of rutting. Accordingly, the practice of adding fiber elements to asphalt mix to improve performance under dynamic loading has grown significantly in order to prevent rutting distress and ensure a safe and long-lasting road surface. This paper explores the effects of a combination of ceramic fiber (CF), a low-cost, easily available mineral fiber, and thermal insulator fiber reinforced to enhance the Marshall properties and increase the rutting resistance of asphalt mixes at high temperatures. Asphalt mixtures with 0%, 0.75%, 1.5%, and 2.25% CF content were prepared, and Marshall stability and wheel tracking tests were employed to stu

... Show More
Scopus (10)
Crossref (7)
Scopus Crossref
Publication Date
Sun Mar 03 2024
Journal Name
Mesopotamian Journal Of Cybersecurity
Using Information Technology for Comprehensive Analysis and Prediction in Forensic Evidence
...Show More Authors

With the escalation of cybercriminal activities, the demand for forensic investigations into these crimeshas grown significantly. However, the concept of systematic pre-preparation for potential forensicexaminations during the software design phase, known as forensic readiness, has only recently gainedattention. Against the backdrop of surging urban crime rates, this study aims to conduct a rigorous andprecise analysis and forecast of crime rates in Los Angeles, employing advanced Artificial Intelligence(AI) technologies. This research amalgamates diverse datasets encompassing crime history, varioussocio-economic indicators, and geographical locations to attain a comprehensive understanding of howcrimes manifest within the city. Lev

... Show More
View Publication
Scopus (15)
Crossref (5)
Scopus Crossref
Publication Date
Mon Jan 01 2018
Journal Name
Communications In Computer And Information Science
Automatically Recognizing Emotions in Text Using Prediction by Partial Matching (PPM) Text Compression Method
...Show More Authors

In this paper, we investigate the automatic recognition of emotion in text. We perform experiments with a new method of classification based on the PPM character-based text compression scheme. These experiments involve both coarse-grained classification (whether a text is emotional or not) and also fine-grained classification such as recognising Ekman’s six basic emotions (Anger, Disgust, Fear, Happiness, Sadness, Surprise). Experimental results with three datasets show that the new method significantly outperforms the traditional word-based text classification methods. The results show that the PPM compression based classification method is able to distinguish between emotional and nonemotional text with high accuracy, between texts invo

... Show More
View Publication
Scopus (1)
Crossref (3)
Scopus Clarivate Crossref