Preferred Language
Articles
/
7hiURpcBVTCNdQwCM5ZM
Reservoir permeability prediction based artificial intelligence techniques
...Show More Authors

   Predicting permeability is a cornerstone of petroleum reservoir engineering, playing a vital role in optimizing hydrocarbon recovery strategies. This paper explores the application of neural networks to predict permeability in oil reservoirs, underscoring their growing importance in addressing traditional prediction challenges. Conventional techniques often struggle with the complexities of subsurface conditions, making innovative approaches essential. Neural networks, with their ability to uncover complicated patterns within large datasets, emerge as a powerful alternative. The Quanti-Elan model was used in this study to combine several well logs for mineral volumes, porosity and water saturation estimation. This model goes beyond simply predicting lithology to provide a detailed quantification of primary minerals (e.g., calcite and dolomite) as well as secondary ones (e.g., shale and anhydrite). The results show important lithological contrast with the high-porosity layers correlating to possible reservoir areas. The richness of Quanti-Elan's interpretations goes beyond what log analysis alone can reveal. The methodology is described in-depth, discussing the approaches used to train neural networks (e.g., data processing, network architecture). A case study where output of neural network predictions of permeability in a particular oil well are compared with core measurements. The results indicate an exceptional closeness between predicted and actual values, further emphasizing the power of this approach. An extrapolated neural network model using lithology (dolomite and limestone) and porosity as input emphasizes the close match between predicted vs. observed carbonate reservoir permeability. This case study demonstrated the ability of neural networks to accurately characterize and predict permeability in complex carbonate systems. Therefore, the results confirmed that neural networks are a reliable and transformative technology tool for oil reservoirs management, which can help to make future predictive methodologies more efficient hydrocarbon recovery operations.

Crossref
View Publication
Publication Date
Sat Mar 25 2023
Journal Name
International Journal Of Drug Delivery Technology
Improvement of Entrapment and Ocular Permeability of Ganciclovir Nanostructured Lipid Carriers Using Various Conditions of Preparations
...Show More Authors

Ganciclovir (GCV) is a drug included in BCS-Class III, having high solubility and low permeability. It is a synthetic acyclic nucleoside analog of 2′-deoxyguanosine, considered a potent inhibitor of herpes viruses and cytomegalovirus (CMV) infection. Herpes simplex virus (HSV) infections are very common and are also considered a major cause of corneal blindness. This study intended to advance a pioneering nanostructured lipid carriers (NLCs) system for improving the ocular permeability of GCV. Several procedures were used for the preparation. Cold homogenization, solvent injection, and emulsifi cationultrasonication methods. A mixture of palmitic acid (PA) and oleic acid (OA) as a lipid matrix, cremophore EL, and transcutol HP wer

... Show More
View Publication
Scopus (3)
Scopus Crossref
Publication Date
Tue Jan 11 2022
Journal Name
Iraqi Journal Of Pharmaceutical Sciences ( P-issn 1683 - 3597 E-issn 2521 - 3512)
Permeability Enhancement of Methotrexate Transdermal Gel using Eucalyptus oil, Peppermint Oil and Olive Oil(Conference Paper )#
...Show More Authors

Abstract

Objective: the idea of this study to improve transdermal permeability of Methotrexate using eucalyptus oil, olive oil and peppermint oil as enhancers.
Method: eucalyptus oil (2% and 4%), peppermint oil (2% and 4%) and olive oil (2% and 4%) all used as natural enhancers to develop transdermal permeability of Methotrexate via gel formulation. The gel was subjected to many physiochemical properties tests. In-vitro release and permeability studies for the drug were done by Franz cell diffusion across synthetic membrane, kinetic model was studied via korsmeyer- peppas equation.
Result: the results demonstrate that safe, nonirritant or cause necrosis to rats' skin and stable till 60 days gel was successfully formulated.<

... Show More
View Publication Preview PDF
Scopus (7)
Crossref (1)
Scopus Crossref
Publication Date
Sun Mar 01 2020
Journal Name
Journal Of Engineering
Wellbore Breakouts Prediction from Different Rock Failure Criteria
...Show More Authors

One of the wellbore instability problems in vertical wells are breakouts in Zubair oilfield. Breakouts, if exceeds its critical limits will produce problems such as loss circulation which will add to the non-productive time (NPT) thus increasing loss in costs and in total revenues. In this paper, three of the available rock failure criteria (Mohr-Coulomb, Mogi-Coulomb and Modified-Lade) are used to study and predict the occurrence of the breakouts. It is found that there is an increase over the allowable breakout limit in breakout width in Tanuma shaly formation and it was predicted using Mohr-Coulomb criterion. An increase in the pore pressure was predicted in Tanuma shaly formation, thus; a new mud weight and casing pr

... Show More
View Publication Preview PDF
Crossref (4)
Crossref
Publication Date
Sat Mar 30 2019
Journal Name
Iraqi Journal Of Chemical And Petroleum Engineering
Prediction of Fracture Pressure Gradient in Halfaya Oilfield
...Show More Authors

   Fracture pressure gradient prediction is complementary in well design and it is must be considered in selecting the safe mud weight, cement design, and determine the optimal casing seat to minimize the common drilling problems. The exact fracture pressure gradient value obtained from tests on the well while drilling such as leak-off test, formation integrity test, cement squeeze ... etc.; however, to minimize the total cost of drilling, there are several methods could be used to calculate fracture pressure gradient classified into two groups: the first one depend on Poisson’s ratio of the rocks and the second is fully empirical methods. In this research, the methods selected are Huubert and willis, Cesaroni I, Cesaroni II,

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Thu Dec 31 2015
Journal Name
Iraqi Journal Of Chemical And Petroleum Engineering
Prediction of Shear Wave velocity for carbonate rocks
...Show More Authors

In many oil fields only the BHC logs (borehole compensated sonic tool) are available to provide interval transit time (Δtp), the reciprocal of compressional wave velocity VP.

   To calculate the rock elastic or inelastic properties, to detect gas-bearing formations, the shear wave velocity VS is needed. Also VS is useful in fluid identification and matrix mineral identification.

   Because of the lack of wells with shear wave velocity data, so many empirical models have been developed to predict the shear wave velocity from compressional wave velocity. Some are mathematical models others used the multiple regression method and neural network technique.

   In this study a number of em

... Show More
View Publication Preview PDF
Publication Date
Mon Mar 23 2020
Journal Name
Journal Of Engineering
prediction Capacity of Euphrates River at Assamawa City
...Show More Authors

The reduction in the rivers capacity is one the most important issue to give the decision maker an idea during the flood season. The study area included the rivers of the Al Atshan, Al Sabeel and Euphrates, which are surveyed with a length of 21, 5 and 20 km respectively. The Euphrates , the Atshan and Al Sabeel rivers were simulated by using HEC-RAS 5.0.3 software to study the real condition within the city of Assamawa. As well as the simulation was implemented by modifying the cross sections of the Euphrates and Al Sabeel rivers to increase their capacity to 1300 and 1200 m3/s respectively which are a flood discharges100 year return periods. The results showed that the maximum discharge capacity under real conditions o

... Show More
View Publication Preview PDF
Crossref (4)
Crossref
Publication Date
Mon Jan 01 2024
Journal Name
Baghdad Science Journal
Artificial Neural Network and Latent Semantic Analysis for Adverse Drug Reaction Detection
...Show More Authors

Adverse drug reactions (ADR) are important information for verifying the view of the patient on a particular drug. Regular user comments and reviews have been considered during the data collection process to extract ADR mentions, when the user reported a side effect after taking a specific medication. In the literature, most researchers focused on machine learning techniques to detect ADR. These methods train the classification model using annotated medical review data. Yet, there are still many challenging issues that face ADR extraction, especially the accuracy of detection. The main aim of this study is to propose LSA with ANN classifiers for ADR detection. The findings show the effectiveness of utilizing LSA with ANN in extracting AD

... Show More
View Publication Preview PDF
Scopus (13)
Crossref (9)
Scopus Crossref
Publication Date
Tue Mar 20 2018
Journal Name
Offshore Technology Conference Asia
Prediction of Hydrate Phase Equilibrium Conditions for Different Gas Mixtures
...Show More Authors
Abstract<p>Gas hydrate formation poses a significant threat to the production, processing, and transportation of natural gas. Accurate predictions of gas hydrate equilibrium conditions are essential for designing the gas production systems at safe operating conditions and mitigating the problems caused by hydrates formation. A new hydrate correlation for predicting gas hydrate equilibrium conditions was obtained for different gas mixtures containing methane, nitrogen and carbon dioxide. The new correlation is proposed for a pressure range of 1.7-330 MPa, a temperature range of 273-320 K, and for gas mixtures with specific gravity range of 0.553 to 1. The nonlinear regression technique was applie</p> ... Show More
Scopus (6)
Scopus Crossref
Publication Date
Mon Nov 11 2019
Journal Name
Spe
Modeling Rate of Penetration using Artificial Intelligent System and Multiple Regression Analysis
...Show More Authors
Abstract<p>Over the years, the prediction of penetration rate (ROP) has played a key rule for drilling engineers due it is effect on the optimization of various parameters that related to substantial cost saving. Many researchers have continually worked to optimize penetration rate. A major issue with most published studies is that there is no simple model currently available to guarantee the ROP prediction.</p><p>The main objective of this study is to further improve ROP prediction using two predictive methods, multiple regression analysis (MRA) and artificial neural networks (ANNs). A field case in SE Iraq was conducted to predict the ROP from a large number of parame</p> ... Show More
View Publication Preview PDF
Crossref (7)
Crossref
Publication Date
Thu Jan 30 2020
Journal Name
Journal Of Engineering
The The Optimum Reservoir Performance of Nahr Umr/Ratawi Oil Field
...Show More Authors

Reservoir study has been developed in order to get a full interesting of the Nahr Umr formation in Ratawi oil field. Oil in place has been calculated for Nahr Umr which was 2981.37 MM BBL. Several runs have been performed to get matching between measured and calculated of oil production data and well test pressure. In order to get the optimum performance of Nahr Umr many strategies have been proposed in this study where vertical and horizontal wells were involved in addition to different production rates. The reservoir was first assumed to be developed with vertical wells only using production rate of (80000–125000) STB/day. The reservoir is also proposed to produce using horizontal wells besides vertical wells with pr

... Show More
View Publication Preview PDF
Crossref