Predicting permeability is a cornerstone of petroleum reservoir engineering, playing a vital role in optimizing hydrocarbon recovery strategies. This paper explores the application of neural networks to predict permeability in oil reservoirs, underscoring their growing importance in addressing traditional prediction challenges. Conventional techniques often struggle with the complexities of subsurface conditions, making innovative approaches essential. Neural networks, with their ability to uncover complicated patterns within large datasets, emerge as a powerful alternative. The Quanti-Elan model was used in this study to combine several well logs for mineral volumes, porosity and water saturation estimation. This model goes beyond simply predicting lithology to provide a detailed quantification of primary minerals (e.g., calcite and dolomite) as well as secondary ones (e.g., shale and anhydrite). The results show important lithological contrast with the high-porosity layers correlating to possible reservoir areas. The richness of Quanti-Elan's interpretations goes beyond what log analysis alone can reveal. The methodology is described in-depth, discussing the approaches used to train neural networks (e.g., data processing, network architecture). A case study where output of neural network predictions of permeability in a particular oil well are compared with core measurements. The results indicate an exceptional closeness between predicted and actual values, further emphasizing the power of this approach. An extrapolated neural network model using lithology (dolomite and limestone) and porosity as input emphasizes the close match between predicted vs. observed carbonate reservoir permeability. This case study demonstrated the ability of neural networks to accurately characterize and predict permeability in complex carbonate systems. Therefore, the results confirmed that neural networks are a reliable and transformative technology tool for oil reservoirs management, which can help to make future predictive methodologies more efficient hydrocarbon recovery operations.
Reservoir study has been developed in order to get a full interesting of the Nahr Umr formation in Ratawi oil field. Oil in place has been calculated for Nahr Umr which was 2981.37 MM BBL. Several runs have been performed to get matching between measured and calculated of oil production data and well test pressure. In order to get the optimum performance of Nahr Umr many strategies have been proposed in this study where vertical and horizontal wells were involved in addition to different production rates. The reservoir was first assumed to be developed with vertical wells only using production rate of (80000–125000) STB/day. The reservoir is also proposed to produce using horizontal wells besides vertical wells with production rat
... Show MoreIntelligent or smart completion wells vary from conventional wells. They have downhole flow control devices like Inflow Control Devices (ICD) and Interval Control Valves (ICV) to enhance reservoir management and control, optimizing hydrocarbon output and recovery. However, to explain their adoption and increase their economic return, a high level of justification is necessary. Smart horizontal wells also necessitate optimizing the number of valves, nozzles, and compartment length. A three-dimensional geological model of the As reservoir in AG oil field was used to see the influence of these factors on cumulative oil production and NPV. After creating the dynamic model for the As reservoir using the program Petrel (2017.4), we
... Show MoreThe paper generates a geological model of a giant Middle East oil reservoir, the model constructed based on the field data of 161 wells. The main aim of the paper was to recognize the value of the reservoir to investigate the feasibility of working on the reservoir modeling prior to the final decision of the investment for further development of this oilfield. Well log, deviation survey, 2D/3D interpreted seismic structural maps, facies, and core test were utilized to construct the developed geological model based on comprehensive interpretation and correlation processes using the PETREL platform. The geological model mainly aims to estimate stock-tank oil initially in place of the reservoir. In addition, three scenarios were applie
... Show MoreNanofluids, liquid suspensions of nanoparticles (Np), are an effective agent to alter the wettability of oil-wet reservoirs to water-wet thus promoting hydrocarbon recovery. It can also have an application to more efficient carbon storage. We present a series of contact angle (θ) investigations on initially oil-wet calcite surfaces to quantify the performance of hydrophilic silica nanoparticles for wettability alteration. These tests are conducted at typical in-situ high pressure (CO2), temperature and salinity conditions. A high pressure–temperature (P/T) optical cell with a regulated tilted surface was used to measure the advancing and receding contact angles at the desired conditions. The results showed that silica nanofluids can alte
... Show MoreThis work is focused on the design parameters and activity of artificial human finger for seven grips. At first, obtained the ideal kinematics of human fingers motion by analyzing the grips video which were recorded using a single digital camera recorder fitted on a tripod in sagital plane while the hand is moving. Special motion analysis software (Dartfish) the finger joint angles were studied using the video recording. Then the seven grips were modeled using static torque analysis, which calculates the amount of torque applied on the fingers joint grip depending on the results of the kinematic analysis. The last step of the work was to design the actuator (Muscle Wire) of artificial finger for the seven grips in a simple design approac
... Show MorePersonal intelligence is thinking about an other person , understanding him, have sympathy and differentiation between people, and to appreciate their own point of view, with the sensitivity to their motives, behavior, and goals, so this intelligence involves dealing with a person or group of persons effectively and in normal or logical manner.
Emotions management is to achieve emotional balance by controlling the emotions continuously, self disciplining, keeping away from excitement sources, and dealing with bad situations in constructive way to achieve the psychological stability .
- the study aims
The COVID-19 pandemic has necessitated new methods for controlling the spread of the virus, and machine learning (ML) holds promise in this regard. Our study aims to explore the latest ML algorithms utilized for COVID-19 prediction, with a focus on their potential to optimize decision-making and resource allocation during peak periods of the pandemic. Our review stands out from others as it concentrates primarily on ML methods for disease prediction.To conduct this scoping review, we performed a Google Scholar literature search using "COVID-19," "prediction," and "machine learning" as keywords, with a custom range from 2020 to 2022. Of the 99 articles that were screened for eligibility, we selected 20 for the final review.Our system
... Show MoreThis study explores the challenges in Artificial Intelligence (AI) systems in generating image captions, a task that requires effective integration of computer vision and natural language processing techniques. A comparative analysis between traditional approaches such as retrieval- based methods and linguistic templates) and modern approaches based on deep learning such as encoder-decoder models, attention mechanisms, and transformers). Theoretical results show that modern models perform better for the accuracy and the ability to generate more complex descriptions, while traditional methods outperform speed and simplicity. The paper proposes a hybrid framework that combines the advantages of both approaches, where conventional methods prod
... Show MoreReduce the required time for measuring the permeability of clayey soils by using new manufactured cell
In many oil-recovery systems, relative permeabilities (kr) are essential flow factors that affect fluid dispersion and output from petroleum resources. Traditionally, taking rock samples from the reservoir and performing suitable laboratory studies is required to get these crucial reservoir properties. Despite the fact that kr is a function of fluid saturation, it is now well established that pore shape and distribution, absolute permeability, wettability, interfacial tension (IFT), and saturation history all influence kr values. These rock/fluid characteristics vary greatly from one reservoir region to the next, and it would be impossible to make kr measurements in all of them. The unsteady-state approach was used to calculate the relat
... Show More