Predicting permeability is a cornerstone of petroleum reservoir engineering, playing a vital role in optimizing hydrocarbon recovery strategies. This paper explores the application of neural networks to predict permeability in oil reservoirs, underscoring their growing importance in addressing traditional prediction challenges. Conventional techniques often struggle with the complexities of subsurface conditions, making innovative approaches essential. Neural networks, with their ability to uncover complicated patterns within large datasets, emerge as a powerful alternative. The Quanti-Elan model was used in this study to combine several well logs for mineral volumes, porosity and water saturation estimation. This model goes beyond simply predicting lithology to provide a detailed quantification of primary minerals (e.g., calcite and dolomite) as well as secondary ones (e.g., shale and anhydrite). The results show important lithological contrast with the high-porosity layers correlating to possible reservoir areas. The richness of Quanti-Elan's interpretations goes beyond what log analysis alone can reveal. The methodology is described in-depth, discussing the approaches used to train neural networks (e.g., data processing, network architecture). A case study where output of neural network predictions of permeability in a particular oil well are compared with core measurements. The results indicate an exceptional closeness between predicted and actual values, further emphasizing the power of this approach. An extrapolated neural network model using lithology (dolomite and limestone) and porosity as input emphasizes the close match between predicted vs. observed carbonate reservoir permeability. This case study demonstrated the ability of neural networks to accurately characterize and predict permeability in complex carbonate systems. Therefore, the results confirmed that neural networks are a reliable and transformative technology tool for oil reservoirs management, which can help to make future predictive methodologies more efficient hydrocarbon recovery operations.
Rock mechanical properties are critical parameters for many development techniques related to tight reservoirs, such as hydraulic fracturing design and detecting failure criteria in wellbore instability assessment. When direct measurements of mechanical properties are not available, it is helpful to find sufficient correlations to estimate these parameters. This study summarized experimentally derived correlations for estimating the shear velocity, Young's modulus, Poisson's ratio, and compressive strength. Also, a useful correlation is introduced to convert dynamic elastic properties from log data to static elastic properties. Most of the derived equations in this paper show good fitting to measured data, while some equations show scatters
... Show MorePlagiarism is becoming more of a problem in academics. It’s made worse by the ease with which a wide range of resources can be found on the internet, as well as the ease with which they can be copied and pasted. It is academic theft since the perpetrator has ”taken” and presented the work of others as his or her own. Manual detection of plagiarism by a human being is difficult, imprecise, and time-consuming because it is difficult for anyone to compare their work to current data. Plagiarism is a big problem in higher education, and it can happen on any topic. Plagiarism detection has been studied in many scientific articles, and methods for recognition have been created utilizing the Plagiarism analysis, Authorship identification, and
... Show MoreArabic text categorization for pattern recognitions is challenging. We propose for the first time a novel holistic method based on clustering for classifying Arabic writer. The categorization is accomplished stage-wise. Firstly, these document images are sectioned into lines, words, and characters. Secondly, their structural and statistical features are obtained from sectioned portions. Thirdly, F-Measure is used to evaluate the performance of the extracted features and their combination in different linkage methods for each distance measures and different numbers of groups. Finally, experiments are conducted on the standard KHATT dataset of Arabic handwritten text comprised of varying samples from 1000 writers. The results in the generatio
... Show MoreThe research aims to shed light on the role of artificial intelligence in achieving Ambidexterity performance, as banks work to take advantage of modern technologies, artificial intelligence is an innovation that is expected to have a long-term impact, as well as banks can improve the quality of their services and analyze data to ensure that customers' future needs are understood. . The Bank of Baghdad and the Middle East Bank were chosen as a community for the study because they had a role in the economic development of the country as well as their active role in the banking market. A sample of department managers was highlighted in collecting data and extracting results based on the checklist, which is the main tool for the stu
... Show MoreThis study specifically contributes to the urgent need for novel methods in Training of Trainers (ToT) programs which can be more effective and efficient through incorporation of AI tools. By exploring scenarios in which AI could be used to dramatically advance trainer preparation, knowledge-sharing, and skill-building across sectors, the research aims to understand the possibility. This study uses a mixed-methods approach, it surveys 500 trainers and conducts in-depth interviews with a further 50 ToT program directors across diverse industries to evaluate the impact of AI-enhanced ToT programs. The results showcase that the use of AI has a substantial positive effect on trainer performance and program outcomes. AI-enhanced ToT programs, fo
... Show MoreFlow-production systems whose pieces are connected in a row may not have maintenance scheduling procedures fixed because problems occur at different times (electricity plants, cement plants, water desalination plants). Contemporary software and artificial intelligence (AI) technologies are used to fulfill the research objectives by developing a predictive maintenance program. The data of the fifth thermal unit of the power station for the electricity of Al Dora/Baghdad are used in this study. Three stages of research were conducted. First, missing data without temporal sequences were processed. The data were filled using time series hour after hour and the times were filled as system working hours, making the volume of the data relativel
... Show MoreThis paper presents a robust algorithm for the assessment of risk priority for medical equipment based on the calculation of static and dynamic risk factors and Kohnen Self Organization Maps (SOM). Four risk parameters have been calculated for 345 medical devices in two general hospitals in Baghdad. Static risk factor components (equipment function and physical risk) and dynamics risk components (maintenance requirements and risk points) have been calculated. These risk components are used as an input to the unsupervised Kohonen self organization maps. The accuracy of the network was found to be equal to 98% for the proposed system. We conclude that the proposed model gives fast and accurate assessment for risk priority and it works as p
... Show MoreArtificial intelligence (AI) offers significant benefits to biomedical research and academic writing. Nevertheless, using AI-powered writing aid tools has prompted worries about excessive dependence on these tools and their possible influence on writing proficiency. The current study aimed to explore the academic staff’s perspectives on the impact of AI on academic writing. This qualitative study incorporated in-person interviews with academic faculty members. The interviews were conducted in a semi-structured manner, using a predetermined interview guide consisting of open-ended questions. The interviews were done in person with the participants from May to November 2023. The data was analyzed using thematic analysis. Ten academics aged
... Show More