Preferred Language
Articles
/
7heHF5EBVTCNdQwCw5L2
Employing difference technique in some Liu estimators to semiparametric regression model
...Show More Authors

Semiparametric methods combined parametric methods and nonparametric methods ,it is important in most of studies which take in it's nature more progress in the procedure of accurate statistical analysis which aim getting estimators efficient, the partial linear regression model is considered the most popular type of semiparametric models, which consisted of parametric component and nonparametric component in order to estimate the parametric component that have certain properties depend on the assumptions concerning the parametric component, where the absence of assumptions, parametric component will have several problems for example multicollinearity means (explanatory variables are interrelated to each other) , To treat this problem we use a difference based through the use of biased estimators, in order to get less biased and variance estimators therefor we used difference based estimator liu and difference based almost unbiased liu estiomator. throughout studying simulation based upon mean square error, we concluded that difference based almost unbiased liu estiomator is better than difference based estimator liu since it has the smallest mean square error after that we estimate nonparametric component so removing parametric component and estimated Nonparametric using k-nearest neighbor smoother.

Crossref
View Publication
Publication Date
Fri Dec 01 2017
Journal Name
Journal Of Economics And Administrative Sciences
A comparison between Bayesian Method and Full Maximum Likelihood to estimate Poisson regression model hierarchy and its application to the maternal deaths in Baghdad
...Show More Authors

Abstract:

 This research aims to compare Bayesian Method and Full Maximum Likelihood to estimate hierarchical Poisson regression model.

The comparison was done by  simulation  using different sample sizes (n = 30, 60, 120) and different Frequencies (r = 1000, 5000) for the experiments as was the adoption of the  Mean Square Error to compare the preference estimation methods and then choose the best way to appreciate model and concluded that hierarchical Poisson regression model that has been appreciated Full Maximum Likelihood Full Maximum Likelihood  with sample size  (n = 30) is the best to represent the maternal mortality data after it has been reliance value param

... Show More
View Publication Preview PDF
Crossref
Publication Date
Sat Oct 20 2018
Journal Name
Journal Of Economics And Administrative Sciences
The Effect of Extreme Values on Streeter-Phleps Model Parameter Estimators With Application Abstract
...Show More Authors

Abstract

   The extremes effects in parameters readings which are BOD (Biological Oxygen Demands) and DO(Dissolved Oxygen) can caused error estimating of the model’s parameters which used to determine the ratio of de oxygenation and re oxygenation of the dissolved oxygen(DO),then that will caused launch big amounts of the sewage pollution  water to the rivers and it’s turn is effect in negative form on the ecosystem life and the different types of the water wealth.

   As result of what mention before this research came to employees Streeter-Phleps model parameters estimation which are (Kd,Kr) the de oxygenation and re oxygenation ratios on respect

... Show More
View Publication Preview PDF
Crossref
Publication Date
Sat Jan 02 2021
Journal Name
The International Journal Of Nonlinear Analysis And Application
Atan regularized for the high dimensional Poisson regression model
...Show More Authors

Variable selection in Poisson regression with high dimensional data has been widely used in recent years. we proposed in this paper using a penalty function that depends on a function named a penalty. An Atan estimator was compared with Lasso and adaptive lasso. A simulation and application show that an Atan estimator has the advantage in the estimation of coefficient and variables selection.

View Publication Preview PDF
Publication Date
Fri Jun 01 2012
Journal Name
Journal Of Economics And Administrative Sciences
"RUF procedures forgetting the best subset linear regression model"
...Show More Authors

The purpose behind building the linear regression model is to describe the real linear relation between any explanatory variable in the model and the dependent one, on the basis of the fact that the dependent variable is a linear function of the explanatory variables and one can use it for prediction and control. This purpose does not cometrue without getting significant, stable and reasonable estimatros for the parameters of the model, specifically regression-coefficients. The researcher found that "RUF" the criterian that he had suggested accurate and sufficient to accomplish that purpose when multicollinearity exists provided that the adequate model that satisfies the standard assumpitions of the error-term can be assigned. It

... Show More
View Publication Preview PDF
Crossref
Publication Date
Mon Mar 31 2025
Journal Name
Iraqi Statisticians Journal
Hypothesis Testing for Non-Normal Multiple Compact Regression Model
...Show More Authors

Generalized multivariate transmuted Bessel distribution belongs to the family of probability distributions with a symmetric heavy tail. It is considered a mixed continuous probability distribution. It is the result of mixing the multivariate Gaussian mixture distribution with the generalized inverse normal distribution. On this basis, the paper will study a multiple compact regression model when the random error follows a generalized multivariate transmuted Bessel distribution. Assuming that the shape parameters are known, the parameters of the multiple compact regression model will be estimated using the maximum likelihood method and Bayesian approach depending on non-informative prior information. In addition, the Bayes factor was used

... Show More
View Publication Preview PDF
Crossref
Publication Date
Tue Dec 01 2015
Journal Name
Journal Of Economics And Administrative Sciences
A Comparison Between Some Estimator Methods of Linear Regression Model With Auto-Correlated Errors With Application Data for the Wheat in Iraq
...Show More Authors

This research a study model of linear regression problem of autocorrelation of random error is spread when a normal distribution as used in linear regression analysis for relationship between variables and through this relationship can predict the value of a variable with the values of other variables, and was comparing methods (method of least squares, method of the average un-weighted, Thiel method and Laplace method) using the mean square error (MSE) boxes and simulation and the study included fore sizes of samples (15, 30, 60, 100). The results showed that the least-squares method is best, applying the fore methods of buckwheat production data and the cultivated area of the provinces of Iraq for years (2010), (2011), (2012),

... Show More
View Publication Preview PDF
Crossref
Publication Date
Tue Jun 15 2021
Journal Name
Al-academy
Employing semantic coding to build meaning in action films: ابراهيم خلف جاسم
...Show More Authors

Action films employ many artistic and literary elements that contribute greatly to building the general meaning of the film and push the wheel of the film forward. The element of mystery and suspense is used as two basic elements in action films. The cinematic language in action films depends on global coding, which is not models as it might be. It is based on logic, rather as units that aspire to morphology and not their homogeneity as the physical sense, but as the logical harmony of interpretive authority and enlightenment and in action films as a field of communication and a field in its origin in which the signifier contrasts with the perceptions of the meaning and in it takes a certain number of units preventing each other and thro

... Show More
View Publication Preview PDF
Crossref
Publication Date
Sat Dec 20 2025
Journal Name
Al Kut Journal Of Economics And Administrative Sciences
Use of the Bootstrap in the logistic regression model for Breast cancer disease
...Show More Authors

The logistic regression model is one of the oldest and most common of the regression models, and it is known as one of the statistical methods used to describe and estimate the relationship between a dependent random variable and explanatory random variables. Several methods are used to estimate this model, including the bootstrap method, which is one of the estimation methods that depend on the principle of sampling with return, and is represented by a sample reshaping that includes (n) of the elements drawn by randomly returning from (N) from the original data, It is a computational method used to determine the measure of accuracy to estimate the statistics, and for this reason, this method was used to find more accurate estimates. The ma

... Show More
View Publication
Publication Date
Tue Apr 04 2023
Journal Name
Journal Of Techniques
Comparison Between the Kernel Functions Used in Estimating the Fuzzy Regression Discontinuous Model
...Show More Authors

Some experiments need to know the extent of their usefulness to continue providing them or not. This is done through the fuzzy regression discontinuous model, where the Epanechnikov Kernel and Triangular Kernel were used to estimate the model by generating data from the Monte Carlo experiment and comparing the results obtained. It was found that the. Epanechnikov Kernel has a least mean squared error.

View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Fri Sep 30 2022
Journal Name
Journal Of Economics And Administrative Sciences
Robust Estimation OF The Partial Regression Model Using Wavelet Thresholding
...Show More Authors

            Semi-parametric regression models have been studied in a variety of applications and scientific fields due to their high flexibility in dealing with data that has problems, as they are characterized by the ease of interpretation of the parameter part while retaining the flexibility of the non-parametric part. The response variable or explanatory variables can have outliers, and the OLS approach have the sensitivity to outliers. To address this issue, robust (resistance) methods were used, which are less sensitive in the presence of outlier values in the data. This study aims to estimate the partial regression model using the robust estimation method with the wavel

... Show More
View Publication Preview PDF
Crossref