Data scarcity is a major challenge when training deep learning (DL) models. DL demands a large amount of data to achieve exceptional performance. Unfortunately, many applications have small or inadequate data to train DL frameworks. Usually, manual labeling is needed to provide labeled data, which typically involves human annotators with a vast background of knowledge. This annotation process is costly, time-consuming, and error-prone. Usually, every DL framework is fed by a significant amount of labeled data to automatically learn representations. Ultimately, a larger amount of data would generate a better DL model and its performance is also application dependent. This issue is the main barrier for many applications dismissing the use of DL. Having sufficient data is the first step toward any successful and trustworthy DL application. This paper presents a holistic survey on state-of-the-art techniques to deal with training DL models to overcome three challenges including small, imbalanced datasets, and lack of generalization. This survey starts by listing the learning techniques. Next, the types of DL architectures are introduced. After that, state-of-the-art solutions to address the issue of lack of training data are listed, such as Transfer Learning (TL), Self-Supervised Learning (SSL), Generative Adversarial Networks (GANs), Model Architecture (MA), Physics-Informed Neural Network (PINN), and Deep Synthetic Minority Oversampling Technique (DeepSMOTE). Then, these solutions were followed by some related tips about data acquisition needed prior to training purposes, as well as recommendations for ensuring the trustworthiness of the training dataset. The survey ends with a list of applications that suffer from data scarcity, several alternatives are proposed in order to generate more data in each application including Electromagnetic Imaging (EMI), Civil Structural Health Monitoring, Medical imaging, Meteorology, Wireless Communications, Fluid Mechanics, Microelectromechanical system, and Cybersecurity. To the best of the authors’ knowledge, this is the first review that offers a comprehensive overview on strategies to tackle data scarcity in DL.
in this paper the second order neutral differential equations are incestigated are were we give some new suffucient conditions for all nonoscillatory
In this study, the adsorption of Zn (NO3)2 is carried out by using surfaces of malvaparviflora. The validity of the adsorption is evaluated by using atomic absorption Spectrophotometry through determination the amount of adsorbed Zn (NO3)2. Various parameters such as PH, adsorbent weight and contact time are studied in terms of their effect on the reaction progress. Furthermore, Lagergren’s equation is used to determine adsorption kinetics. It is observed that high removal of Zn (NO3)2 is obtained at PH=2. High removal of Zn (NO3)2 is at the time equivalent of 60 min and reaches equilibrium,where 0.25gm is the best weight of adsorbant . For kinetics the reaction onto malvaparviflora follows pseudo first order Lagergren’s equation.
The lead has adverse effects in contamination the aquatic environment, for this reason, a laboratory simulation was conducted using kaolinite collected from the Ga’ara Formation at western Iraq to be considered as a natural sorbent material that can be addressed Pb2+ from the aqueous environments. The Energy-Dispersive X-ray Spectroscopy and atomic absorption spectroscopy clarifying very fine grains and pure phase with a very little quantity of quartz and has a number of active sites for adsorption. The sorption of kaolinite for the Pb2+ has been carefully tested by several designed laboratory experiments. Five lead solutions of different concentrations (25, 50, 75, 100 and 125 ppm) were tested under different values of pH (1.3-9)
... Show MoreThis study aims to test ceramic waste's capacity to remove nickel from aqueous solutions through adsorption. Ceramic wastes were collected from the Refractories Manufacturing Plant in Ramadi. Through a series of lab tests, the reaction time (5, 10, 15, 20, 25, 30, 35, 40, 45, and 50 minutes, and Ni concentrations (20, 40, 60, and 80) were tested using ceramic wastes with a solid to liquid ratio of 2g/30ml. At a temperature of 30ºC, the pH, total dissolved solids (TDS), and electrical conductivity (EC) were all measured. The equilibrium time was set at 30 min. Thereafter, the sorption (%) somewhat increased positively with the Ni concentration. Freundlich's equation showed that the adsorption intensity is 1.1827 and the Freundlich c
... Show MoreAdvanced strategies for production forecasting, operational optimization, and decision-making enhancement have been employed through reservoir management and machine learning (ML) techniques. A hybrid model is established to predict future gas output in a gas reservoir through historical production data, including reservoir pressure, cumulative gas production, and cumulative water production for 67 months. The procedure starts with data preprocessing and applies seasonal exponential smoothing (SES) to capture seasonality and trends in production data, while an Artificial Neural Network (ANN) captures complicated spatiotemporal connections. The history replication in the models is quantified for accuracy through metric keys such as m
... Show MoreAbstract
This research aims to improve the provided health service level inside Baghdad hospitals and the Yarmouk educational, as well as to shed light on the reality of the health service and the quality within the major operations room in both hospitals, as the operations room represent the research community, as was the use of some quality tools Pareto and Ishikawa diagram to measure and assess the level of quality provided, and include research problem to find out what are the problems and obstacles facing the process of improving quality in both hospitals, and whether there are scientifically accurate method to assess the quality of health service in Baghdad's Yarmouk hospital and educational . Where the researcher h
... Show MoreObstruct:  
... Show MoreElectrochemical corrosion of hydroxyapatite (HAP) coated performance depends on various parameters like applied potential, time, thickness and sintering temperature. Thus, the optimum parameters required for the development of stable HAP coatings was found by using electrophoretic deposition (EPD) technique. This study discusses the results obtained from open circuit potential-time measurements (OCP-time), potentiodynamic polarisation and immersion tests for all alloy samples done under varying experimental conditions, so that the optimum coating parameters can be established. The ageing studies of the coated samples were carried out by immersing them in Ringer’s solution for a period of 30 days indicates the importance of stable HAP c
... Show More