Data scarcity is a major challenge when training deep learning (DL) models. DL demands a large amount of data to achieve exceptional performance. Unfortunately, many applications have small or inadequate data to train DL frameworks. Usually, manual labeling is needed to provide labeled data, which typically involves human annotators with a vast background of knowledge. This annotation process is costly, time-consuming, and error-prone. Usually, every DL framework is fed by a significant amount of labeled data to automatically learn representations. Ultimately, a larger amount of data would generate a better DL model and its performance is also application dependent. This issue is the main barrier for many applications dismissing the use of DL. Having sufficient data is the first step toward any successful and trustworthy DL application. This paper presents a holistic survey on state-of-the-art techniques to deal with training DL models to overcome three challenges including small, imbalanced datasets, and lack of generalization. This survey starts by listing the learning techniques. Next, the types of DL architectures are introduced. After that, state-of-the-art solutions to address the issue of lack of training data are listed, such as Transfer Learning (TL), Self-Supervised Learning (SSL), Generative Adversarial Networks (GANs), Model Architecture (MA), Physics-Informed Neural Network (PINN), and Deep Synthetic Minority Oversampling Technique (DeepSMOTE). Then, these solutions were followed by some related tips about data acquisition needed prior to training purposes, as well as recommendations for ensuring the trustworthiness of the training dataset. The survey ends with a list of applications that suffer from data scarcity, several alternatives are proposed in order to generate more data in each application including Electromagnetic Imaging (EMI), Civil Structural Health Monitoring, Medical imaging, Meteorology, Wireless Communications, Fluid Mechanics, Microelectromechanical system, and Cybersecurity. To the best of the authors’ knowledge, this is the first review that offers a comprehensive overview on strategies to tackle data scarcity in DL.
Technological advances have yielded new molecular biology-based methods for the diagnosis of infectious diseases. The newest and most powerful molecular diagnostic tests are available at regional and national reference laboratories, as well as at specialized centers that are certified to conduct metagenomic testing. Metagenomic assays utilize advances in DNA extraction technology, DNA sequence library construction, high throughput DNA sequencing and automated data analysis to identify millions of individual strands of DNA extracted from clinical samples. At present, metagenomic assays are only possible at a small number of special research, academic and commercial laboratories. Continued research in human and path
... Show MoreThis study aims to conduct an exhaustive comparison between the performance of human translators and artificial intelligence-powered machine translation systems, specifically examining the top three systems: Spider-AI, Metacate, and DeepL. A variety of texts from distinct categories were evaluated to gain a profound understanding of the qualitative differences, as well as the strengths and weaknesses, between human and machine translations. The results demonstrated that human translation significantly outperforms machine translation, with larger gaps in literary texts and texts characterized by high linguistic complexity. However, the performance of machine translation systems, particularly DeepL, has improved and in some contexts
... Show MoreIn this work Nano crystalline (Cu2S) thin films pure and doped 3% Al with a thickness of 400±20 nm was precipitated by thermic steaming technicality on glass substrate beneath a vacuum of ~ 2 × 10− 6 mbar at R.T to survey the influence of doping and annealing after doping at 573 K for one hour on its structural, electrical and visual properties. Structural properties of these movies are attainment using X-ray variation (XRD) which showed Cu2S phase with polycrystalline in nature and forming hexagonal temple ,with the distinguish trend along the (220) grade, varying crystallites size from (42.1-62.06) nm after doping and annealing. AFM investigations of these films show that increase average grain size from 105.05 nm to 146.54 nm
... Show MoreDelays and disruption are a common issue in both community and personal building programs The problem exists all throughout the world, but it is particularly prevalent in Iraq, where millions of dollars are squandered each time as a outcome. Delays and interruptions may have serious consequences not just for Iraq's construction plans, but also for the country's economic and social status. While numerous studies have been conducted to investigate the factors driving delays and disruption in Iraqi construction projects, slight consideration has been given to by what means project management implements and approaches have affected the occurrence of project delays and disruption. After analyzing the crucial reasons for delays and instability in
... Show MoreThe topic of strategic intelligence is considered as important topics that acquires the attention of organizations, Because of its role in supplying the decision-making centers by strategic ideas according to the opportunities and threats facing the organization, in an effort to improve the performance of their organizations to reach the high performance organization.
A lot of organizations lack to strategy guides the strategic intelligence towards achieving high performance organization.
This research aims to determine the level of strategic intelligence that characterized the leaders of diseases and kidney transplant center in Medicine city. What is the application level of the
... Show MoreThe present study aims at empirically investigating the effect of vocabulary learning strategies on Iraqi intermediate school students’vocabulary performance and reading comprehension. The population of the present study includes all the 1st year male students of Al-Wark’a intermediate school of Al-Risafa 1/ General Directorate of Education for the first course of the academic year (2015-2016). To achieve the aim of the study ,a pre-test and post-test after (5) weeks of experiment are administrated .The sample of the present study consists of (100) subjects :(50) students as an experimental group and other (50) students as a control group . The subj
... Show MoreThe aim of this study is to compare the effects of three methods: problem-based learning (PBL), PBL with lecture method, and conventional teaching on the understanding of thermodynamics, group work and self-directed learning skills among physics undergraduates. The actual sample size comprises of 122 students, who were selected randomly from the Physics Department, College of Education in Iraq, for academic year 2011-2012. In this study, the pre and posttest were done and the instruments were administered to the students for data collection. Inferential statistics were employed to analyze data. The independent variables were the PBL, the PBL with lecture method, and the conventional teaching. Dependent variables of statistical analysis were
... Show MoreThe Coronavirus Disease 2019 (COVID-19) pandemic has caused an unprecedented disruption in medical education and healthcare systems worldwide. The disease can cause life-threatening conditions and it presents challenges for medical education, as instructors must deliver lectures safely, while ensuring the integrity and continuity of the medical education process. It is therefore important to assess the usability of online learning methods, and to determine their feasibility and adequacy for medical students. We aimed to provide an overview of the situation experienced by medical students during the COVID-19 pandemic, and to determine the knowledge, attitudes, and practices of medical students regarding electronic medical education.
... Show More