Preferred Language
Articles
/
7hb2-okBVTCNdQwCe46x
A survey on deep learning tools dealing with data scarcity: definitions, challenges, solutions, tips, and applications
...Show More Authors
Abstract<p>Data scarcity is a major challenge when training deep learning (DL) models. DL demands a large amount of data to achieve exceptional performance. Unfortunately, many applications have small or inadequate data to train DL frameworks. Usually, manual labeling is needed to provide labeled data, which typically involves human annotators with a vast background of knowledge. This annotation process is costly, time-consuming, and error-prone. Usually, every DL framework is fed by a significant amount of labeled data to automatically learn representations. Ultimately, a larger amount of data would generate a better DL model and its performance is also application dependent. This issue is the main barrier for many applications dismissing the use of DL. Having sufficient data is the first step toward any successful and trustworthy DL application. This paper presents a holistic survey on state-of-the-art techniques to deal with training DL models to overcome three challenges including small, imbalanced datasets, and lack of generalization. This survey starts by listing the learning techniques. Next, the types of DL architectures are introduced. After that, state-of-the-art solutions to address the issue of lack of training data are listed, such as Transfer Learning (TL), Self-Supervised Learning (SSL), Generative Adversarial Networks (GANs), Model Architecture (MA), Physics-Informed Neural Network (PINN), and Deep Synthetic Minority Oversampling Technique (DeepSMOTE). Then, these solutions were followed by some related tips about data acquisition needed prior to training purposes, as well as recommendations for ensuring the trustworthiness of the training dataset. The survey ends with a list of applications that suffer from data scarcity, several alternatives are proposed in order to generate more data in each application including Electromagnetic Imaging (EMI), Civil Structural Health Monitoring, Medical imaging, Meteorology, Wireless Communications, Fluid Mechanics, Microelectromechanical system, and Cybersecurity. To the best of the authors’ knowledge, this is the first review that offers a comprehensive overview on strategies to tackle data scarcity in DL.</p>
Scopus Clarivate Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Tue Dec 01 2020
Journal Name
Baghdad Science Journal
A Modified Support Vector Machine Classifiers Using Stochastic Gradient Descent with Application to Leukemia Cancer Type Dataset
...Show More Authors

Support vector machines (SVMs) are supervised learning models that analyze data for classification or regression. For classification, SVM is widely used by selecting an optimal hyperplane that separates two classes. SVM has very good accuracy and extremally robust comparing with some other classification methods such as logistics linear regression, random forest, k-nearest neighbor and naïve model. However, working with large datasets can cause many problems such as time-consuming and inefficient results. In this paper, the SVM has been modified by using a stochastic Gradient descent process. The modified method, stochastic gradient descent SVM (SGD-SVM), checked by using two simulation datasets. Since the classification of different ca

... Show More
View Publication Preview PDF
Scopus (11)
Crossref (6)
Scopus Clarivate Crossref
Publication Date
Wed Apr 14 2021
Journal Name
Wireless Personal Communications
A Partial CSI Estimation Approach for Downlink FDD massive-MIMO System with Different Base Transceiver Station Topologies
...Show More Authors

Massive multiple-input multiple-output (massive-MIMO) is a promising technology for next generation wireless communications systems due to its capability to increase the data rate and meet the enormous ongoing data traffic explosion. However, in non-reciprocal channels, such as those encountered in frequency division duplex (FDD) systems, channel state information (CSI) estimation using downlink (DL) training sequence is to date very challenging issue, especially when the channel exhibits a shorter coherence time. In particular, the availability of sufficiently accurate CSI at the base transceiver station (BTS) allows an efficient precoding design in the DL transmission to be achieved, and thus, reliable communication systems can be obtaine

... Show More
View Publication
Scopus (6)
Crossref (6)
Scopus Clarivate Crossref
Publication Date
Sun Feb 03 2019
Journal Name
Journal Of Accounting And Financial Studies ( Jafs )
Anti-Money Laundering Protection procedures in Commercial With establishment of a Proposal from work to Audit banks
...Show More Authors

Concurrently with the technological development that the world is witnessing the crime of money laundering to evolve faster and with multiple methods and its economic, political and social impacts raised increasingly. And for phenomenon dangerous the international community in recent years is keen to be considered combating money laundering as a general indication whereby verification of the international response the stats and its banks and financial institutions with international requirements mandated in this aspect, so the increasing interest the governments of countries in the laws and procedures that contribute to the reduction of the phenomenon of money laundering and avoid legislation economy and the banking and financial sectors

... Show More
View Publication Preview PDF
Crossref
Publication Date
Sun Nov 01 2015
Journal Name
Journal Of Engineering
A Spike Neural Controller for Traffic Load Parameter with Priority-Based Rate in Wireless Multimedia Sensor Networks
...Show More Authors

Wireless Multimedia Sensor Networks (WMSNs) are a type of sensor network that contains sensor nodes equipped with cameras, microphones; therefore the WMSNS are able to   produce multimedia data such as video and audio streams, still images, and scalar data from the surrounding environment. Most multimedia applications typically produce huge volumes of data, this leads to congestion. To address this challenge, This paper proposes Modify Spike Neural Network control for Traffic Load Parameter with Exponential Weight of Priority Based Rate Control algorithm (MSNTLP with EWBPRC). The Modify Spike Neural Network controller (MSNC) can calculate the appropriate traffi

... Show More
View Publication Preview PDF
Publication Date
Thu Jun 30 2022
Journal Name
Journal Of Economics And Administrative Sciences
Using a hybrid SARIMA-NARNN Model to Forecast the Numbers of Infected with (COVID-19) in Iraq
...Show More Authors

Coronavirus disease (COVID-19) is an acute disease that affects the respiratory system which initially appeared in Wuhan, China. In Feb 2019 the sickness began to spread swiftly throughout the entire planet, causing significant health, social, and economic problems. Time series is an important statistical method used to study and analyze a particular phenomenon, identify its pattern and factors, and use it to predict future values. The main focus of the research is to shed light on the study of SARIMA, NARNN, and hybrid models, expecting that the series comprises both linear and non-linear compounds, and that the ARIMA model can deal with the linear component and the NARNN model can deal with the non-linear component. The models

... Show More
View Publication Preview PDF
Crossref
Publication Date
Mon May 15 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Effect Of Some Enzymes Activity In Liver Diseases From Patients Of Salmonella Paratyphi A With Iraqi Woman.
...Show More Authors

 This present study demonstrated that liver was involved in 14 %of typhoid patients manifesting with  hepatomegaly. Elevation of serum enzymes in typhoid fever was presumably of a muscular origin, while elevation of liver enzyme was relatively less common.       This study was performed on 30 female patients diagnosed by ultrasound (US) of abdomen, with paratyphoid A, ranged between (20-40) years  compared with 30 healthy control .Patients volunteers were treated with appropriate antibiotics for 14 days and investigations were repeated 2-3 week after completion of treatment. Patients had clinical and biochemical evidence of hepatic dysfunction. The spectrum of hepatic involvement included hepa

... Show More
View Publication Preview PDF
Publication Date
Sun Oct 02 2011
Journal Name
Journal Of Educational And Psychological Researches
The Effect of a consulting program for decreasing withdrawal behavior of the children with autism of kindergarten
...Show More Authors

       unacceptable social behaviors, particularly withdrawal behavior that appears in children with autism represent a major problem hindering the process of communication with those around them and therefore the process of mergence  with them be difficult.

     The withdrawal causes a real affect deficit for children with autism limits the possibility of development of their intellectual and mental growth due to their solitude and the weakness of their focus in the acquisition of pedagogical skills and lack the necessary social skills to maintain the relations of friendship and enjoyment of them.

      withdrawal children fail to participate

... Show More
View Publication Preview PDF
Publication Date
Wed Feb 01 2023
Journal Name
Chemical Engineering Research And Design
Nickel removal from simulated wastewater using a novel bio-electrochemical cell with packed bed rotating cylinder cathode
...Show More Authors

View Publication
Scopus (6)
Crossref (6)
Scopus Clarivate Crossref
Publication Date
Wed Apr 20 2022
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
A New Approach to Solving Linear Fractional Programming Problem with Rough Interval Coefficients in the Objective Function
...Show More Authors

This paper presents a linear fractional programming problem (LFPP) with rough interval coefficients (RICs) in the objective function. It shows that the LFPP with RICs in the objective function can be converted into a linear programming problem (LPP) with RICs by using the variable transformations. To solve this problem, we will make two LPP with interval coefficients (ICs). Next, those four LPPs can be constructed under these assumptions; the LPPs can be solved by the classical simplex method and used with MS Excel Solver. There is also argumentation about solving this type of linear fractional optimization programming problem. The derived theory can be applied to several numerical examples with its details, but we show only two examples

... Show More
View Publication Preview PDF
Crossref (2)
Crossref
Publication Date
Thu Mar 30 2023
Journal Name
Optics Continuum
Ultrafast lithium disilicate veneer debonding time assisted by a CO<sub>2</sub> laser with temperature control
...Show More Authors

We report on using a CO2 (10.6 µm) laser to debond the lithium disilicate veneers. Sixty-four sound human premolar teeth and 64 veneer specimens were used in the study. The zigzag movement via CO2 laser handpiece along with an air-cooled jet to prevent temperature elevation above the necrosis temperature limit (5.5 C°) was applied. The optimal deboning irradiation time was super-fast, at about 5 seconds at 3 Watt CO2 laser power. It is 20 times less than any previously published work for veneers debonding. The enamel beneath the debonded veneers has been assessed by atomic force microscopy (AFM) and shear stress technique as criteria for the easiness of debonding. The

... Show More
View Publication
Scopus (2)
Crossref (2)
Scopus Clarivate Crossref