Data scarcity is a major challenge when training deep learning (DL) models. DL demands a large amount of data to achieve exceptional performance. Unfortunately, many applications have small or inadequate data to train DL frameworks. Usually, manual labeling is needed to provide labeled data, which typically involves human annotators with a vast background of knowledge. This annotation process is costly, time-consuming, and error-prone. Usually, every DL framework is fed by a significant amount of labeled data to automatically learn representations. Ultimately, a larger amount of data would generate a better DL model and its performance is also application dependent. This issue is the main barrier for many applications dismissing the use of DL. Having sufficient data is the first step toward any successful and trustworthy DL application. This paper presents a holistic survey on state-of-the-art techniques to deal with training DL models to overcome three challenges including small, imbalanced datasets, and lack of generalization. This survey starts by listing the learning techniques. Next, the types of DL architectures are introduced. After that, state-of-the-art solutions to address the issue of lack of training data are listed, such as Transfer Learning (TL), Self-Supervised Learning (SSL), Generative Adversarial Networks (GANs), Model Architecture (MA), Physics-Informed Neural Network (PINN), and Deep Synthetic Minority Oversampling Technique (DeepSMOTE). Then, these solutions were followed by some related tips about data acquisition needed prior to training purposes, as well as recommendations for ensuring the trustworthiness of the training dataset. The survey ends with a list of applications that suffer from data scarcity, several alternatives are proposed in order to generate more data in each application including Electromagnetic Imaging (EMI), Civil Structural Health Monitoring, Medical imaging, Meteorology, Wireless Communications, Fluid Mechanics, Microelectromechanical system, and Cybersecurity. To the best of the authors’ knowledge, this is the first review that offers a comprehensive overview on strategies to tackle data scarcity in DL.
Background: Economic Globalization affects work condition by increasing work stress. Chronic work stress ended with burnout syndrome. Objectives: To estimate the prevalence of burnout syndrome and the association of job title, and violence with it among physicians in Baghdad, and to assess the burnout syndrome at patient and work levels by structured interviews. Subjects and Methods: A cross section study was conducted on Physicians in Baghdad. Sampling was a multistage, stratified sampling to control the confounders in the design phase. A mixed qualitative and quantitative approach (triangulation) was used. Quantitative method used self-administered questionnaires of Maslach Burn out Inventory. Qualitative approach used an open-end
... Show MoreCD40 is a type 1 transmembrane protein composed of 277 amino acids, and it belongs to the tumor necrosis factor receptor (TNFR) superfamily. It is expressed in a variety of cell types, including normal B cells, macrophages, dendritic cells, and endothelial cells, as a costimulatory molecule. This study aims to summarize the CD40 polymorphism effect and its susceptibility to immune-related disorders. The CD40 gene polymorphisms showed a significant association with different immune-related disorders and act as a risk factor for increased susceptibility to these diseases.
In this paper a system is designed and implemented using a Field Programmable Gate Array (FPGA) to move objects from a pick up location to a delivery location. This transportation of objects is done via a vehicle equipped with a robot arm and an FPGA. The path between the two locations is followed by recognizing a black line between them. The black line is sensed by Infrared sensors (IR) located on the front and on the back of the vehicle. The Robot was successfully implemented by programming the Field Programmable Gate Array with the designed system that was described as a state diagram and the robot operated properly.
Diabetes Mellitus (DM) is a chronic disease distributed worldwide and dominantly related to different types of diseases especially microbial infections, this study aimed to find the relationship between DM mouth microbiome and some demographic factors. Sixty saliva specimens and bacterial oral swabs were collected from randomly selected DM patients, including 29 females and 31 males enrolled in this study, which was obtained from the Al-Mustansiriya University national diabetes center in Baghdad, and other 40 apparently healthy people specimens and swabs were collected from 25 females and 15 males as a control group for the period starting November / 2021 to February / 2022. The results revealed that the most prevalent bacterial gener
... Show MoreHand gestures are currently considered one of the most accurate ways to communicate in many applications, such as sign language, controlling robots, the virtual world, smart homes, and the field of video games. Several techniques are used to detect and classify hand gestures, for instance using gloves that contain several sensors or depending on computer vision. In this work, computer vision is utilized instead of using gloves to control the robot's movement. That is because gloves need complicated electrical connections that limit user mobility, sensors may be costly to replace, and gloves can spread skin illnesses between users. Based on computer vision, the MediaPipe (MP) method is used. This method is a modern method that is discover
... Show MoreIn this paper the centralizing and commuting concerning skew left -derivations and skew left -derivations associated with antiautomorphism on prime and semiprime rings were studied and the commutativity of Lie ideal under certain conditions were proved.
Mercury(II) ion is extracted as ion pair with thiocyanate using DCM .The effects of different parameters affecting the ease of extraction are determined . These parameters are pH ,Thiocyanate ion concentration ,type and concentration of the counter cation concentration of the reagent , temperature and type of solvents .Other crown ethers (15C5 DB24C , DCH18C6 and 18C6 and cryptand- 222 are investigated as extracting reagents using slop analysis method UV-visible and IR spectrometry .CHN analysis and melting points determination are perfored for comlex analysis .All these investigations indicated the formula [k+CE]2[Hg (SCN )4]-2.