Data scarcity is a major challenge when training deep learning (DL) models. DL demands a large amount of data to achieve exceptional performance. Unfortunately, many applications have small or inadequate data to train DL frameworks. Usually, manual labeling is needed to provide labeled data, which typically involves human annotators with a vast background of knowledge. This annotation process is costly, time-consuming, and error-prone. Usually, every DL framework is fed by a significant amount of labeled data to automatically learn representations. Ultimately, a larger amount of data would generate a better DL model and its performance is also application dependent. This issue is the main barrier for many applications dismissing the use of DL. Having sufficient data is the first step toward any successful and trustworthy DL application. This paper presents a holistic survey on state-of-the-art techniques to deal with training DL models to overcome three challenges including small, imbalanced datasets, and lack of generalization. This survey starts by listing the learning techniques. Next, the types of DL architectures are introduced. After that, state-of-the-art solutions to address the issue of lack of training data are listed, such as Transfer Learning (TL), Self-Supervised Learning (SSL), Generative Adversarial Networks (GANs), Model Architecture (MA), Physics-Informed Neural Network (PINN), and Deep Synthetic Minority Oversampling Technique (DeepSMOTE). Then, these solutions were followed by some related tips about data acquisition needed prior to training purposes, as well as recommendations for ensuring the trustworthiness of the training dataset. The survey ends with a list of applications that suffer from data scarcity, several alternatives are proposed in order to generate more data in each application including Electromagnetic Imaging (EMI), Civil Structural Health Monitoring, Medical imaging, Meteorology, Wireless Communications, Fluid Mechanics, Microelectromechanical system, and Cybersecurity. To the best of the authors’ knowledge, this is the first review that offers a comprehensive overview on strategies to tackle data scarcity in DL.
In this work, solid random gain media were fabricated from laser dye solutions containing nanoparticles as scattering centers. Two different rhodamine dyes (123 and 6G) were used to host the highly-pure titanium dioxide nanoparticles to form the random gain media. The spectroscopic characteristics (mainly fluorescence) of these media were determined and studied. These random gain media showed laser emission in the visible region of electromagnetic spectrum. Fluorescence characteristics can be controlled to few nanometers by adjusting the characteristics of the host and nanoparticles as well as the preparation conditions of the samples. Emission of narrow linewidth (3nm) and high intensity in the visible region (533-537nm) was obtained.
In this work, solid random gain media were fabricated from laser dye solutions containing nanoparticles as scattering centers. Two different rhodamine dyes (123 and 6G) were used to host the highly-pure titanium dioxide nanoparticles to form the random gain media. The spectroscopic characteristics (mainly fluorescence) of these media were determined and studied. These random gain media showed laser emission in the visible region of electromagnetic spectrum. Fluorescence characteristics can be controlled to few nanometers by adjusting the characteristics of the host and nanoparticles as well as the preparation conditions of the samples. Emission of narrow linewidth (3nm) and high intensity in the visible region (533-537nm) was obtained.
Re-use of the byproduct wastes resulting from different municipal and industrial activities in the reclamation of contaminated water is real application for green projects and sustainability concepts. In this direction, the synthesis of composite sorbent from the mixing of waterworks and sewage sludge coated with new nanoparticles named “siderite” (WSSS) is the novelty of this study. These particles can be precipitated from the iron(II) nitrate using waterworks sludge as alkaline agent and source of carbonate. Characterization tests using X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS) mapping revealed that the coating process was c
Takbiratul Ehram "The First Takbeer to Start Prayer" means: the words that the worshiper says to start his prayers, and refrain from anything invalidates it. the findings revealed that the four school jurists agreed that the prayer is not valid without Takbiratul Ehram "The First Takbeer to Start Prayer", and they disagreed on its description, so the majority of jurists said that it is a pillar, and some of them called it an obligatory, but Hanafi made it a condition. Likewise, the four jurists agreed that the one who articulates Takbiratul Ehram "The First Takbeer to Start Prayer" with the word: “Allahu Akbar,”; his Takbeer is correct, and they disagreed about the one who adds a word, or replaced it with another, where the m
... Show MoreEconomic analysis plays a pivotal role in managerial decision-making processes. This analysis is predicated on deeply understanding economic forces and market factors influencing corporate strategies and decisions. This paper delves into the role of economic data analysis in managing small and medium-sized enterprises (SMEs) to make strategic decisions and enhance performance. The study underscores the significance of this approach and its impact on corporate outcomes. The research analyzes annual reports from three companies: Al-Mahfaza for Mobile and Internet Financial Payment and Settlement Services Company Limited, Al-Arab for Electronic Payment Company, and Iraq Electronic Gateway for Financial Services Company. The paper concl
... Show MoreEducation around the world has been negatively affected by the new coronavirus disease (COVID-19) pandemic. Many institutions had to transition to distance learning in compliance with the enforced safety measures. Distance learning might work well for settings with stable internet connections, professional technical teams, and basic implementation of technology in education. In contrast, distance learning faces serious challenges in less fortunate settings with inferior infrastructure. This report aims to shed light on the immediate action steps taken at a leading pharmacy school in Iraq to accommodate for the enforced changes in pharmacy education. The University of Baghdad College of Pharmacy went from less than minimal technology impl
... Show MoreThe research aimed to identify “The impact of an instructional-learning design based on the brain- compatible model in systemic thinking among first intermediate grade female students in Mathematics”, in the day schools of the second Karkh Educational directorate.In order to achieve the research objective, the following null hypothesis was formulated:There is no statistically significant difference at the significance level (0.05) among the average scores of the experimental group students who will be taught by applying an (instructional- learning) design based to on the brain–compatible model and the average scores of the control group students who will be taught through the traditional method in the systemic thinking test.The resear
... Show MoreCloud-based Electronic Health Records (EHRs) have seen a substantial increase in usage in recent years, especially for remote patient monitoring. Researchers are interested in investigating the use of Healthcare 4.0 in smart cities. This involves using Internet of Things (IoT) devices and cloud computing to remotely access medical processes. Healthcare 4.0 focuses on the systematic gathering, merging, transmission, sharing, and retention of medical information at regular intervals. Protecting the confidential and private information of patients presents several challenges in terms of thwarting illegal intrusion by hackers. Therefore, it is essential to prioritize the protection of patient medical data that is stored, accessed, and shared on
... Show More