Data scarcity is a major challenge when training deep learning (DL) models. DL demands a large amount of data to achieve exceptional performance. Unfortunately, many applications have small or inadequate data to train DL frameworks. Usually, manual labeling is needed to provide labeled data, which typically involves human annotators with a vast background of knowledge. This annotation process is costly, time-consuming, and error-prone. Usually, every DL framework is fed by a significant amount of labeled data to automatically learn representations. Ultimately, a larger amount of data would generate a better DL model and its performance is also application dependent. This issue is the main barrier for many applications dismissing the use of DL. Having sufficient data is the first step toward any successful and trustworthy DL application. This paper presents a holistic survey on state-of-the-art techniques to deal with training DL models to overcome three challenges including small, imbalanced datasets, and lack of generalization. This survey starts by listing the learning techniques. Next, the types of DL architectures are introduced. After that, state-of-the-art solutions to address the issue of lack of training data are listed, such as Transfer Learning (TL), Self-Supervised Learning (SSL), Generative Adversarial Networks (GANs), Model Architecture (MA), Physics-Informed Neural Network (PINN), and Deep Synthetic Minority Oversampling Technique (DeepSMOTE). Then, these solutions were followed by some related tips about data acquisition needed prior to training purposes, as well as recommendations for ensuring the trustworthiness of the training dataset. The survey ends with a list of applications that suffer from data scarcity, several alternatives are proposed in order to generate more data in each application including Electromagnetic Imaging (EMI), Civil Structural Health Monitoring, Medical imaging, Meteorology, Wireless Communications, Fluid Mechanics, Microelectromechanical system, and Cybersecurity. To the best of the authors’ knowledge, this is the first review that offers a comprehensive overview on strategies to tackle data scarcity in DL.
The aim of the research to highlight the calendar of the most important tools used by the Central Bank of Iraq, in the implementation of the function of supervisory oversight, to verify the stability of the banking system, and protect the funds of shareholders, and depositors in general and the absence of any raises the risks of default and financial failure in particular, for commercial banks. The most important flaws and weaknesses in these tools, in the early detection of the risks of continuity in a timely manner, The study concluded a set of conclusions, including the weakness of the tools used in the performance of the function of supervisory oversight in detecting cases of default and financial failure in the early time as well as
... Show MoreThe aim of this study is to find a relationship between oxidative stress and adiponectin in Iraqi patients with acromegaly. The present study included 30 patients with acromegaly disease attending at Al-Yarmuk teaching hospital , and 30 healthy individuals as a control group.The two groups with ages ranging (30-55) years. The results revealed a highly significant elevation in all parameters (GH,IGF-1 , adiponectin , malondialdehyde , and peroxynitrite ) levels in sera of patients when compared with healthy control .It can be concluded that oxidative stress (malondialdehyde and peroxynitrite ) may be valuable in detecting of endocrine diseases like acromegaly .
The aim of this study is to find a relationship between oxidative stress and adiponectin in Iraqi patients with acromegaly. The present study included 30 patients with acromegaly disease attending at Al-Yarmuk teaching hospital , and 30 healthy individuals as a control group.The two groups with ages ranging (30-55) years. The results revealed a highly significant elevation in all parameters (GH,IGF-1 , adiponectin , malondialdehyde , and peroxynitrite ) levels in sera of patients when compared with healthy control .It can be concluded that oxidative stress (malondialdehyde and peroxynitrite ) may be valuable in detecting of endocrine diseases like acromegaly .
A novel ligand, (E)-5-((2-hydroxy-4,6-dimethylphenyl)diazenyl)-2,3-dihydrophthalazine-1,4- dione, was synthesized through the reaction of 3,5-dimethylphenol with the diazonium salt of 5-amino-2,3-dihydrophthalazine-1,4-dione. The ligand underwent characterization through the utilization of diverse spectroscopic methods, including UV-Vis, FT-IR, 13C, and 1H-NMR, alongside Mass spectroscopy and micro elemental analysis (Carbon, Hydrogen, Nitrogen, and Oxygen). Metal chelates of transition metals were prepared and analyzed using elemental analysis, mass spectra, atomic absorption, UV-Vis, FT-IR spectral analysis, as well as conductivity and magnetic measurements. The investigation into the compounds’ nature was conducted by utilizing mole r
... Show MoreDiscriminant analysis is a technique used to distinguish and classification an individual to a group among a number of groups based on a linear combination of a set of relevant variables know discriminant function. In this research discriminant analysis used to analysis data from repeated measurements design. We will deal with the problem of discrimination and classification in the case of two groups by assuming the Compound Symmetry covariance structure under the assumption of normality for univariate repeated measures data.
... Show More