Industrial buildings usually are designed to sustain several types of load systems, such as dead, live, and dynamic loads (especially the harmonic load produced by rotary motors). In general, these buildings require high-strength structural elements to carry the applied loads. Moreover, Reactive Powder Concrete (RPC) has been used for this purpose because of its excellent mechanical strength and endurance. Therefore, this study provides an experimental analysis of the structural behaviors of reinforced RPC beams under harmonic loads. The experimental program consisted of testing six simply supported RPC beams with lengths of 1500 mm, widths of 150 mm, and thicknesses of 200 mm under harmonic loading with varied frequencies between 10 and 20 Hz. Different steel fiber ratios of 0%, 0.5%, 0.75%, 1.0%, 1.5%, and 1.75% were provided in the concrete mixes to explore the effect of steel fibers on the dynamic behavior of these beams. Except for the steel fiber volume fraction, all of the examined specimens shared the same material attributes and reinforcing details. The outcomes proved the positive effect of adding steel fibers on the dynamic response under the effect of harmonic loading. The optimum volume fraction of steel fibers was characterized by a percentage of 1.5%. Moreover, the vibration amplitude was more affected by the steel fibers than the support reactions. The inertial force increased as the harmonic loading duration increased. This increase in the inertial force by the load duration was enhanced after adding the steel fibers. However, this enhancement started to decline after increasing the steel fiber content to 1.75%.
In this paper, an ecological model with stage-structure in prey population, fear, anti-predator and harvesting are suggested. Lotka-Volterra and Holling type II functional responses have been assumed to describe the feeding processes . The local and global stability of steady points of this model are established. Finally, the global dynamics are studied numerically to investigate the influence of the parameters on the solutions of the system, especially the effect of fear and anti-predation.
Emotional exhaustion considered one of the critical factors in the formation and composition of organizational behavior of individuals within organizations, as well as social behavior and psychological, and emotional exhaustion is one of the three components of burnout, as well as depersonalization (cynicism) and low achievement, the emergence of research relevant to this concept began at the beginning of the seventies of the twentieth century, then started to become clear features in the eighties it. This research aims to build intellectual framework for draining emotional exhaustion through highlight on most important philosophical contents, as well as review and analysis of some models associated with this concept, and then a
... Show MoreBackground: In Iraqi communities, the workers considered the largest population groups, so increasing their dental education by increasing the care for their dental health knowledge and behavior is very important, the present study was aimed to evaluate the gingival health and oral hygiene in relation to knowledge and behavior among a group of a workers selected randomly from Al Fedaa company in Baghdad city. Materials and methods: A sample of 110 workers (65 men and 45 women) included in this study, a questionnaire used to evaluate their oral health knowledge and behavior. The gingival health condition of the workers was examined by using Loe and Silness index (1963), Silness and Loe index (1964) was used to asses plaque quantity, and Ramf
... Show MoreThe cement slurry is a mixture of cement, water and additives which is established at the surface for injecting inside hole. The compressive strength is considered the most important properties of slurry for testing the slurry reliability and is the ability of slurry to resist deformation and formation fluids. Compressive strength is governed by the sort of raw materials that include additives, cement structure, and exposure circumstances. In this work, we use micro silica like pozzolanic materials. Silica fume is very fine noncrystalline substantial. Silica fume can be utilized like material for supplemental cementations for increasing the compressive strength and durability of cement. Silica fume has very fine particles size less
... Show MoreThis study aims to identify the role of satellite channels in imparting behavior to children from the point of view of their parents in Tulkarm city. The researcher used a descriptive technique. A sample of (18000) males and females married couples was used above 20 years old in the city of Tulkarm. The study sample size is (201) married couples. It took place in September 2020. The questionnaire was the main tool for collecting data. The study found that the total degree of satellite channels contribution in imparting negative behaviors to children was high, as it reached (72.20%). The total degree of the role of satellite channels in imparting positive behaviors to children was medium, reaching (69.20%). Moreover, the results also indi
... Show MoreA new series of metal ions complexes of VO(II), Cr(III), Mn(II), Zn(II), Cd(II) and Ce(III) have been synthesized from the Schiff bases (4-chlorobenzylidene)-urea amine (L1) and (4-bromobenzylidene)-urea amine (L2). Structural features were obtained from their elemental microanalyses, magnetic susceptibility, molar conductance, FT-IR, UV–Vis, LC-Mass and 1HNMR spectral studies. The UV–Vis, magnetic susceptibility and molar conductance data of the complexes suggest a tetrahedral geometry around the central metal ion except, VOII complexes that has square pyramidal geometry, but CrIII and CeIII octahedral geometry. The biological activity for the ligand (L1) and its Vanadium and Cadmium complexes were studied. Structural geometries of com
... Show MoreIn this work, InSe thin films were deposited on glass substrates by thermal evaporation technique with a deposit rate of (2.5∓0.2) nm/sec. The thickness of the films was around (300∓10) nm, and the thin films were annealed at (100, 200 and 300)°C. The structural, morphology, and optical properties of Indium selenide thin films were studied using X-ray diffraction, Scanning Electron Microscope and UV–Visible spectrometry respectively. X-ray diffraction analyses showed that the as deposited thin films have amorphous structures. At annealing temperature of 100°C and 200°C, the films show enhanced crystalline nature, but at 300°C the film shows a polycrystalline structure with Rhombohedral phas