Industrial buildings usually are designed to sustain several types of load systems, such as dead, live, and dynamic loads (especially the harmonic load produced by rotary motors). In general, these buildings require high-strength structural elements to carry the applied loads. Moreover, Reactive Powder Concrete (RPC) has been used for this purpose because of its excellent mechanical strength and endurance. Therefore, this study provides an experimental analysis of the structural behaviors of reinforced RPC beams under harmonic loads. The experimental program consisted of testing six simply supported RPC beams with lengths of 1500 mm, widths of 150 mm, and thicknesses of 200 mm under harmonic loading with varied frequencies between 10 and 20 Hz. Different steel fiber ratios of 0%, 0.5%, 0.75%, 1.0%, 1.5%, and 1.75% were provided in the concrete mixes to explore the effect of steel fibers on the dynamic behavior of these beams. Except for the steel fiber volume fraction, all of the examined specimens shared the same material attributes and reinforcing details. The outcomes proved the positive effect of adding steel fibers on the dynamic response under the effect of harmonic loading. The optimum volume fraction of steel fibers was characterized by a percentage of 1.5%. Moreover, the vibration amplitude was more affected by the steel fibers than the support reactions. The inertial force increased as the harmonic loading duration increased. This increase in the inertial force by the load duration was enhanced after adding the steel fibers. However, this enhancement started to decline after increasing the steel fiber content to 1.75%.
Two field experimسents were conducted in one of the fields of the Agriculture Division of Ain Al-Tamr /Holy Karbala Governorate at two sites of different textures during the agricultural season 2020/2021. The first site has sandy loam texture (gypsum soils). The second site has loamy sand texture (calcareous soils). The factors of the study included: The first factor included two types of soil, gypsum and calcareous soil. The second factor is the tillage systems (no-tillage, spring spike harrows, disc harrows, and mold board plow). The experiment was designed in the two study sites according to the RCBD with three replications. The Valley type center pivot irrigation system was evaluated before planting, three speeds, 30, 50 and 100% of th
... Show MoreThis study was conducted to evaluate the efficacy of 6 isolates of Pseudomonas fluorescens and Trichoderma harzianum and there combination against Fusarium tomato wilt disease caused by Fusarium oxysporum F.sp. Lycopersisi under green house condition .The isolates of bacteria (B3) and Trichoderma (T1) were found to be highly effective in reducing the disease incidence to 13.3% , 21% respectively , compared to control treatment (40%).Furthermore, disease severity was reduced to 28 and 30% respectively in comparison to control (90%) .Colonization of the roots (cfu /g fresh root weight )by the two isolates whether alon or together was extremely high . The combination treatment had a high ability in reducing disease incidenece and sev
... Show MoreEncasing glass fiber reinforced polymer (GFRP) beam with reinforced concrete (RC) improves stability, prevents buckling of the web, and enhances the fire resistance efficiency. This paper provides experimental and numerical investigations on the flexural performance of RC specimens composite with encased pultruded GFRP I-sections. The effect of using shear studs to improve the composite interaction between the GFRP beam and concrete was explored. Three specimens were tested under three-point loading. The deformations, strains in the GFRP beams, and slippages between the GFRP beams and concrete were recorded. The embedded GFRP beam enhanced the peak loads by 65% and 51% for the composite specimens with and without shear connectors,
... Show MoreMassive multiple-input multiple-output (massive-MIMO) is considered as the key technology to meet the huge demands of data rates in the future wireless communications networks. However, for massive-MIMO systems to realize their maximum potential gain, sufficiently accurate downlink (DL) channel state information (CSI) with low overhead to meet the short coherence time (CT) is required. Therefore, this article aims to overcome the technical challenge of DL CSI estimation in a frequency-division-duplex (FDD) massive-MIMO with short CT considering five different physical correlation models. To this end, the statistical structure of the massive-MIMO channel, which is captured by the physical correlation is exploited to find sufficiently
... Show MoreA simple, low cost and rapid flow injection turbidimetric method was developed and validated for mebeverine hydrochloride (MBH) determination in pharmaceutical preparations. The developed method is based on forming of a white, turbid ion-pair product as a result of a reaction between the MBH and sodium persulfate in a closed flow injection system where the sodium persulfate is used as precipitation reagent. The turbidity of the formed complex was measured at the detection angle of 180° (attenuated detection) using NAG dual&Solo (0-180°) detector which contained dual detections zones (i.e., measuring cells 1 & 2). The increase in the turbidity of the complex was directly proportional to the increase of the MBH concentration
... Show MoreThe research included studying the effect of different plowing depths (10,20and30) cm and three angles of the disc harrows (18,20and25) when they were combined in one compound machine consisting of a triple plow and disc harrows tied within one structure. Draft force, fuel consumption, practical productivity, and resistance to soil penetration. The results indicated that the plowing depth and disc angle had a significant effect on all studied parameters. The results showed that when the plowing depth increased and the disc angle increased, leads to increased pull force ratio, fuel consumption, resistance to soil penetration, and reduce the machine practical productivity.
The using of waste products as a recycled material was one of the most important studies for saving money and reduces the pollution. Mortar and concrete mixes with (10, 20 and 30)% of brick, glass and tile powder as replacement by weight of cement was investigated. The concrete mixes using brick or glass as 10%replacement of cement exhibited enhancement in compressive strength about (6, 4.7 and 2.0)% and (7.2, 5.6 and 2)% at age 7, 28 and 90 days respectively compared to reference mix. The 20% replacement of glass powder also showed an increase in the compressive strength up to (8, 6.3 and 4) %at age 7,28 and 90 days respectively compared to reference mix. Finally concrete mix using (10, 20 and 30) % tile powder as replacement of cement sho
... Show MoreThe using of waste products as a recycled material was one of the most important studies for saving money and reduces the pollution. Mortar and concrete mixes with (10, 20 and 30)% of brick, glass and tile powder as replacement by weight of cement was investigated. The concrete mixes using brick or glass as 10%replacement of cement exhibited enhancement in compressive strength about (6, 4.7 and 2.0)% and (7.2, 5.6 and 2)% at age 7, 28 and 90 days respectively compared to reference mix. The 20% replacement of glass powder also showed an increase in the compressive strength up to (8, 6.3 and 4) %at age 7,28 and 90 days respectively compared to reference mix. Finally concrete mix using (10, 20 and 30) % tile powder as replacement of cement sho
... Show More